
System Life Cycle
Models
File:TPM Chart from INCOSE SELIG.png > abstract syntax > agile >
Talk:Service Systems Engineering Stages > System Life Cycle Models

The printable version is no longer supported and may
have rendering errors. Please update your browser
bookmarks and please use the default browser print
function instead.

Lead Authors: Kevin Forsberg, Rick Adcock ,
Contributing Author: Alan Faisandier

The life cycle model is one of the key concepts of
systems engineering (SE). A life cycle for a system
generally consists of a series of stages regulated by a set
of management decisions which confirm that the system
is mature enough to leave one stage and enter another.

Contents
Topics
Type of Value Added Products/Services
Categories of Life Cycle Model
Systems Engineering Responsibility
References

Works Cited
Primary References
Additional References
Relevant Videos

Topics
Each part of the SEBoK is divided into knowledge areas
(KAs), which are groupings of information with a related
theme. The KAs in turn are divided into topics. This KA
contains the following topics:

http://sandbox.sebokwiki.org/File:TPM_Chart_from_INCOSE_SELIG.png
http://sandbox.sebokwiki.org/Abstract_Syntax_(glossary)
http://sandbox.sebokwiki.org/Agile_(glossary)
http://sandbox.sebokwiki.org/Talk:Service_Systems_Engineering_Stages
http://sandbox.sebokwiki.org/System_Life_Cycle_Models
#Type_of_Value_Added_Products.2FServices

System Life Cycle Process Drivers and Choices
Vee Life Cycle Model
Incremental Life Cycle Model
Integration of Process and Product Models
Lean Engineering

See the article Matrix of Implementation Examples for a
mapping of case studies and vignettes included in Part 7
to topics covered in Part 3.

Type of Value Added
Products/Services
The Generic Life Cycle Model shows just the single-step
approach for proceeding through the stages of a
system’s life cycle. Adding value (as a product, a service,
or both), is a shared purpose among all enterprises,
whether public or private, for profit or non-profit. Value
is produced by providing and integrating the elements of
a system into a product or service according to the
system description and transitioning it into productive
use. These value considerations will lead to various
forms of the generic life cycle management approach in
Figure 1. Some examples are as follows (Lawson 2010):

A manufacturing enterprise produces nuts, bolts, and
lock washer products and then sells their products as
value added elements to be used by other
enterprises; in turn, these enterprises integrate these
products into their more encompassing value-added
system, such as an aircraft or an automobile. Their
requirements will generally be pre-specified by the
customer or by industry standards.

A wholesaling or retailing enterprise offers products to
their customers. Its customers (individuals or
enterprises) acquire the products and use them as
elements in their systems. The enterprise support
system will likely evolve opportunistically, as new
infrastructure capabilities or demand patterns
emerge.

A commercial service enterprise such as a bank sells a
variety of products as services to their customers. This
includes current accounts, savings accounts, loans,
and investment management. These services add
value and are incorporated into customer systems of

http://sandbox.sebokwiki.org/System_Life_Cycle_Process_Drivers_and_Choices
http://sandbox.sebokwiki.org/Vee_Life_Cycle_Model
http://sandbox.sebokwiki.org/Incremental_Life_Cycle_Model
http://sandbox.sebokwiki.org/Integration_of_Process_and_Product_Models
http://sandbox.sebokwiki.org/Lean_Engineering
http://sandbox.sebokwiki.org/Matrix_of_Implementation_Examples
http://sandbox.sebokwiki.org/Generic_Life_Cycle_Model

individuals or enterprises. The service enterprise’s
support system will also likely evolve
opportunistically, as new infrastructure capabilities or
demand patterns emerge.

A governmental service enterprise provides citizens
with services that vary widely, but may include
services such as health care, highways and roads,
pensions, law enforcement, or defense. Where
appropriate, these services become infrastructure
elements utilized in larger encompassing systems of
interest to individuals and/or enterprises. Major
initiatives, such as a next-generation air traffic control
system or a metropolitan-area crisis management
system (hurricane, typhoon, earthquake, tsunami,
flood, fire), will be sufficiently complex enough to
follow an evolutionary development and fielding
approach. At the elemental level, there will likely be
pre-specified single-pass life cycles.

For aircraft and automotive systems, there would
likely be a pre-specified multiple-pass life cycle to
capitalize on early capabilities in the first pass, but
architected to add further value-adding capabilities in
later passes.

A diversified software development enterprise
provides software products that meet stakeholder
requirements (needs), thus providing services to
product users. It will need to be developed to have
capabilities that can be tailored to be utilized in
different customers’ life-cycle approaches and also
with product-line capabilities that can be quickly and
easily applied to similar customer system
developments. Its business model may also include
providing the customer with system life-cycle support
and evolution capabilities.

Within these examples, there are systems that remain
stable over reasonably long periods of time and those
that change rapidly. The diversity represented by these
examples and their processes illustrate why there is no
one-size-fits-all process that can be used to define a
specific systems life cycle. Management and leadership
approaches must consider the type of systems involved,
their longevity, and the need for rapid adaptation to
unforeseen changes, whether in competition, technology,
leadership, or mission priorities. In turn, the
management and leadership approaches impact the type

and number of life cycle models that are deployed as
well as the processes that will be used within any
particular life cycle.

There are several incremental and evolutionary
approaches for sequencing the life cycle stages to deal
with some of the issues raised above. The Life Cycle
Models knowledge area summarizes a number of
incremental and evolutionary life cycle models, including
their main strengths and weaknesses and also discusses
criteria for choosing the best-fit approach.

Categories of Life Cycle Model
The Generic System Life Cycle Model in Figure 1 does
not explicitly fit all situations. A simple, precedential,
follow-on system may need only one phase in the
definition stage, while a complex system may need more
than two. With build-upon systems (vs. throwaway)
prototypes, a good deal of development may occur
during the definition stage. System integration,
verification, and validation may follow implementation or
acquisition of the system elements. With software,
particularly test-first and daily builds, integration,
verification, and validation are interwoven with element
implementation. Additionally, with the upcoming Third
Industrial Revolution of three-dimensional printing and
digital manufacturing (Whadcock 2012), not only initial
development but also initial production may be done
during the concept stage.

Software is a flexible and malleable medium which
facilitates iterative analysis, design, construction,
verification, and validation to a greater degree than is
usually possible for the purely physical components of a
system. Each repetition of an iterative development
model adds material (code) to the growing software
base, in which the expanded code base is tested,
reworked as necessary, and demonstrated to satisfy the
requirements for the baseline.

Software can be electronically bought, sold, delivered,
and upgraded anywhere in the world within reach of
digital communication, making its logistics significantly
different and more cost-effective than hardware. It does
not wear out and its fixes change its content and
behavior, making regression testing more complex than
with hardware fixes. Its discrete nature dictates that its
testing cannot count on analytic continuity as with
hardware. Adding 1 to 32767 in a 15-bit register does
not produce 32768, but 0 instead, as experienced in
serious situations, such as with the use of the Patriot

http://sandbox.sebokwiki.org/Life_Cycle_Models
http://sandbox.sebokwiki.org/Life_Cycle_Models

Missile.

There are a large number of potential life cycle process
models. They fall into three major categories:

primarily pre-specified and sequential processes (e.g.1.
the single-step waterfall model)
primarily evolutionary and concurrent processes (e.g.2.
lean development, the agile unified process, and
various forms of the vee and spiral models)
primarily interpersonal and emergent processes (e.g.3.
agile development, scrum, extreme programming
(XP), the dynamic system development method, and
innovation-based processes)

The emergence of integrated, interactive hardware-
software systems made pre-specified processes
potentially harmful, as the most effective human-system
interfaces tended to emerge with its use, leading to
further process variations, such as soft SE (Warfield
1976, Checkland 1981) and human-system integration
processes (Booher 2003, Pew and Mavor 2007). Until
recently, process standards and maturity models have
tried to cover every eventuality. They have included
extensive processes for acquisition management, source
selection, reviews and audits, quality assurance,
configuration management, and document management,
which in many instances would become overly
bureaucratic and inefficient. This led to the introduction
of more lean (Ohno 1988; Womack et al. 1990;
Oppenheim 2011) and agile (Beck 1999; Anderson 2010)
approaches to concurrent hardware-software-human
factors approaches such as the concurrent vee models
(Forsberg 1991; Forsberg 2005) and Incremental
Commitment Spiral Model (Pew and Mavor 2007;
Boehm, et. al. 2014).

In the next article on System Life Cycle Process Drivers
and Choices, these variations on the theme of life cycle
models will be identified and presented.

Systems Engineering
Responsibility
Regardless of the life cycle models deployed, the role of
the systems engineer encompasses the entire life cycle
of the system-of-interest. Systems engineers orchestrate
the development and evolution of a solution, from
defining requirements through operation and ultimately
until system retirement. They ensure that domain

http://sandbox.sebokwiki.org/System_Life_Cycle_Process_Drivers_and_Choices
http://sandbox.sebokwiki.org/System_Life_Cycle_Process_Drivers_and_Choices

experts are properly involved, all advantageous
opportunities are pursued, and all significant risks are
identified and, when possible, mitigated. The systems
engineer works closely with the project manager in
tailoring the generic life cycle, including key decision
gates, to meet the needs of their specific project.

Systems engineering tasks are usually concentrated at
the beginning of the life cycle; however, both
commercial and government organizations recognize the
need for SE throughout the system’s life cycle. Often this
ongoing effort is to modify or change a system, product
or service after it enters production or is placed in
operation. Consequently, SE is an important part of all
life cycle stages. During the production, support, and
utilization (PSU) stages, for example, SE executes
performance analysis, interface monitoring, failure
analysis, logistics analysis, tracking, and analysis of
proposed changes. All these activities are essential to
ongoing support of the system. Maintaining the
requirements and design within a model based systems
engineering (MBSE) tool enables configuration
management and analysis throughout the SOI life cycle.

All project managers must ensure that the business
aspect (cost, schedule, and value) and the technical
aspect of the project cycle remain synchronized. Often,
the technical aspect drives the project. It is the systems
engineers’ responsibility to ensure that the technical
solutions that are being considered are consistent with
the cost and schedule objectives. This can require
working with the users and customers to revise
objectives to fit within the business bounds. These issues
also drive the need for decision gates to be appropriately
spaced throughout the project cycle. Although the
nature of these decision gates will vary by the major
categories above, each will involve in-process validation
between the developers and the end users. In-process
validation asks the question: “Will what we are planning
or creating satisfy the stakeholders’ needs?” In-process
validation begins at the initialization of the project
during user needs discovery and continues through daily
activities, formal decision gate reviews, final product or
solution delivery, operations, and ultimately to system
closeout and disposal.

References

Works Cited

Anderson, D. 2010. Kanban. Sequim, WA: Blue Hole

Press.

Beck, K. 1999. Extreme Programming Explained. Boston,
MA: Addison Wesley.

Boehm, B., J. Lane, S. Koolmanojwong, and R. Turner.
2014. The Incremental Commitment Spiral Model:
Principles and Practices for Successful Systems and
Software. Indianapolis, IN, USA: Addison-Wesley.

Booher, H. (ed.) 2003. Handbook of Human Systems
Integration. Hoboken, NJ, USA: Wiley.

Checkland, P. 1999. Systems Thinking, Systems Practice,
2nd ed. Hoboken, NJ, USA: Wiley.

Cusumano, M., and D. Yoffie. 1998. Competing on
Internet Time, New York, NY, USA: The Free Press.

Forsberg, K. and H. Mooz. 1991. "The Relationship of
System Engineering to the Project Cycle," Proceedings
of INCOSE, October 1991.

Forsberg, K., H. Mooz, and H. Cotterman. 2005.
Visualizing Project Management, 3rd ed. Hoboken, NJ: J.
Wiley & Sons.

ISO/IEC/IEEE. 2015.Systems and software engineering -
system life cycle processes.Geneva, Switzerland:
International Organization for Standardization
(ISO)/International Electrotechnical Commission (IEC),
Institute of Electrical and Electronics Engineers.ISO/IEC
15288:2015.

Lawson, H. 2010. A Journey Through the Systems
Landscape. London, UK: College Publications.

Ohno, T. 1988. Toyota Production System. New York,
NY: Productivity Press.

Oppenheim, B. 2011. Lean for Systems Engineering.
Hoboken, NJ: Wiley.

Pew, R. and A. Mavor (eds.). 2007. Human-System
Integration in The System Development Process: A New
Look. Washington, DC, USA: The National Academies
Press.

Warfield, J. 1976. Systems Engineering. Washington, DC,
USA: US Department of Commerce (DoC).

Whadcock, I. 2012. “A third industrial revolution.” The
Economist. April 21, 2012.

http://sandbox.sebokwiki.org/ISO/IEC/IEEE_15288
http://sandbox.sebokwiki.org/ISO/IEC/IEEE_15288
http://sandbox.sebokwiki.org/ISO/IEC/IEEE_15288
http://sandbox.sebokwiki.org/ISO/IEC/IEEE_15288

Womack, J.P., D.T. Jones, and D. Roos 1990. The
Machine That Changed the World: The Story of Lean
Production. New York, NY, USA: Rawson Associates.

Primary References

Blanchard, B.S., and W.J. Fabrycky. 2011. Systems
Engineering and Analysis, 5th ed. Prentice-Hall
International series in Industrial and Systems
Engineering. Englewood Cliffs, NJ, USA: Prentice-Hall.

Forsberg, K., H. Mooz, H. Cotterman. 2005. Visualizing
Project Management, 3rd Ed. Hoboken, NJ: J. Wiley &
Sons.

INCOSE. 2015. Systems Engineering Handbook, version
4. San Diego, CA, USA: International Council on Systems
Engineering (INCOSE). INCOSE-TP-2003-002-04.

Lawson, H. 2010. A Journey Through the Systems
Landscape. London, UK: College Publications.

Pew, R. and A. Mavor (Eds.). 2007. Human-System
Integration in The System Development Process: A New
Look. Washington, DC, USA: The National Academies
Press.

Additional References

Chrissis, M., M. Konrad, and S. Shrum. 2003. CMMI:
Guidelines for Process Integration and Product
Improvement. New York, NY, USA: Addison Wesley.

Larman, C. and B. Vodde. 2009. Scaling Lean and Agile
Development. New York, NY, USA: Addison Wesley.

The following three books are not referenced in the
SEBoK text, nor are they systems engineering "texts";
however, they contain important systems engineering
lessons, and readers of this SEBOK are encouraged to
read them.

Kinder, G. 1998. Ship of Gold in the Deep
Blue Sea. New York, NY, USA: Grove
Press.

This is an excellent book that follows an idea from
inception to its ultimately successful implementation.
Although systems engineering is not discussed, it is

http://sandbox.sebokwiki.org/Systems_Engineering_and_Analysis
http://sandbox.sebokwiki.org/Systems_Engineering_and_Analysis
http://sandbox.sebokwiki.org/Visualizing_Project_Management
http://sandbox.sebokwiki.org/Visualizing_Project_Management
http://sandbox.sebokwiki.org/INCOSE_Systems_Engineering_Handbook
http://sandbox.sebokwiki.org/A_Journey_Through_the_Systems_Landscape
http://sandbox.sebokwiki.org/A_Journey_Through_the_Systems_Landscape
http://sandbox.sebokwiki.org/Human-System_Integration_in_the_System_Development_Process
http://sandbox.sebokwiki.org/Human-System_Integration_in_the_System_Development_Process
http://sandbox.sebokwiki.org/Human-System_Integration_in_the_System_Development_Process

clearly illustrated in the whole process from early
project definition to alternate concept development to
phased exploration and “thought experiments” to
addressing challenges along the way. It also shows the
problem of not anticipating critical problems outside the
usual project and engineering scope. It took about five
years to locate and recover the 24 tons of gold bars and
coins from the sunken ship in the 2,500-meter-deep
ocean, but it took ten years to win the legal battle with
the lawyers representing insurance companies who
claimed ownership based on 130-year-old policies they
issued to the gold owners in 1857.

McCullough, D. 1977. The Path Between
the Seas: The Creation of the Panama
Canal (1870 – 1914). New York, NY, USA:
Simon & Schuster.

Although “systems engineering” is not mentioned, this
book highlights many systems engineering issues and
illustrates the need for SE as a discipline. The book also
illustrates the danger of applying a previously successful
concept (the sea level canal used in Suez a decade
earlier) in a similar but different situation. Ferdinand de
Lesseps led both the Suez and Panama projects. It
illustrates the danger of lacking a fact-based project
cycle and meaningful decision gates throughout the
project cycle. It also highlights the danger of providing
project status without visibility. After five years into the
ten-year project investors were told the project was
more than 50 percent complete when in fact only 10
percent of the work was complete. The second round of
development under Stevens in 1904 focused on “moving
dirt” rather than digging a canal, a systems engineering
concept key to the completion of the canal. The Path
Between the Seas won the National Book Award for
history (1978), the Francis Parkman Prize (1978), the
Samuel Eliot Morison Award (1978), and the Cornelius
Ryan Award (1977).

Shackleton, Sir E.H. 2008. (Originally
published in by William Heinemann,
London, 1919). South: The Last Antarctic
Expedit ion of Shackleton and the
Endurance. Guilford, CT, USA: Lyons
Press.

This is the amazing story of the last Antarctic expedition
of Shackleton and the Endurance in 1914 to 1917. The

systems engineering lesson is the continuous, daily risk
assessment by the captain, expedition leader, and crew
as they lay trapped in the arctic ice for 18 months. All 28
crew members survived.

Relevant Videos

NASA's Approach to Systems Engineering- Space
Systems Engineering 101 w/ NASA

< Previous Article | Parent Article | Next Article >
SEBoK v. 2.10, released 06 May 2024

Retrieved from
"https://sandbox.sebokwiki.org/index.php?title=System_Life_Cycle_M
odels&oldid=71401"

This page was last edited on 2 May 2024, at 22:22.

https://www.youtube.com/watch?v=jxT7_NPFjkA
https://www.youtube.com/watch?v=jxT7_NPFjkA
http://sandbox.sebokwiki.org/Applying_Life_Cycle_Processes
http://sandbox.sebokwiki.org/Systems_Engineering_and_Management
http://sandbox.sebokwiki.org/System_Life_Cycle_Process_Drivers_and_Choices
https://sandbox.sebokwiki.org/index.php?title=System_Life_Cycle_Models&oldid=71401
https://sandbox.sebokwiki.org/index.php?title=System_Life_Cycle_Models&oldid=71401

