
Key Points a Systems
Engineer Needs to Know
about Software
Engineering
Key Points a Systems Engineer Needs to Know about Software Engineering

The printable version is no longer supported and may
have rendering errors. Please update your browser
bookmarks and please use the default browser print
function instead.

Lead Author: Dick Fairley, Contributing Author: Alice
Squires

The  field  of  software  engineering  is  extensive  and
specialized. Its importance to modern systems makes it
necessary for  systems engineers to be knowledgeable
about  software  engineering  and  its  relationship  to
systems  engineering.

Contents
Key Concepts a Systems Engineer Needs to Know about
Software Engineering
References

Works Cited
Primary References
Additional References

Key Concepts a Systems Engineer
Needs to Know about Software
Engineering
The following items are significant aspects that systems
engineers need to know about  software and software
engineering.  Most  are  documented  in  (Fairley  and

http://sandbox.sebokwiki.org/Key_Points_a_Systems_Engineer_Needs_to_Know_about_Software_Engineering


Willshire  2011):

For the time, effort, and expense devoted to1.
developing it, software is more complex than
most other system components - Software
complexity arises because few elements in a software
program (even down to the statement level) are
identical, as well as because of the large number of
possible decision paths found even in small programs,
with the number of decision paths through a large
program often being astronomical. There are several
detailed references on software complexity. The
SWEBOK (Bourque and Fairley 2014) discusses
minimizing complexity as part of software
construction fundamentals. Zuse (1991) has a highly
cited article on software complexity measures and
methods. Chapters 2 and 3 of the SWEBOK also have
further references.
Software testing and reviews are sampling2.
processes - In all but the simplest cases, exhaustive
testing of software is impossible because of the large
number of decision paths through most programs.
Also, the combined values of the input variables
selected from a wide combinatorial range may reveal
defects that other combinations of the variables would
not detect. Software test cases and test scenarios are
chosen in an attempt to gain confidence that the
testing samples are representative of the ways the
software will be used in practice. Structured reviews
of software are an effective mechanism for finding
defects, but the significant effort required limits
exhaustive reviewing. Criteria must be established to
determine which components (or sub-components)
should be reviewed. Although there are similar
concerns about exhaustive testing and reviewing of
physical products, the complexity of software makes
software testing, reviews, and the resulting assurance
provided more challenging. Other points include:

All software testing approaches and techniques1.
are heuristic. Hence, there is no universal "best"
approach, practice, or technique for testing, since
these must be selected based on the software
context.
Exhaustive testing is not possible.2.
Errors in software tend to cluster within the3.
software structures; therefore, any one specific



approach or a random approach to testing is not
advised.
Pesticide paradox exists. As a result, running the4.
same test over and over on the same software-
system provides no new information.
Testing can reveal the presence of defects but5.
cannot guarantee that there will be no errors,
except under the specific conditions of a given
test.
Testing, including verification and validation6.
(V&V), must be performed early and continually
throughout the lifecycle (end to end).
Even after extensive testing and V&V, errors are7.
likely to remain after long term use of the
software.
Chapter 4 of the SWEBOK discusses software8.
testing and provides a bibliography.

Software often provides the interfaces that3.
interconnect other system components -
Software is often referred to as the glue that holds a
system together because the interfaces among
components, as well as the interfaces to the
environment and other systems, are often provided by
digital sensors and controllers that operate via
software. Because software interfaces are behavioral
rather than physical, the interactions that occur
among software components often exhibit emergent
behaviors that cannot always be predicted in advance.
In addition to component interfaces, software usually
provides the computational and decision algorithms
needed to generate command and control signals. The
SWEBOK has multiple discussions of interfaces:
Chapter 2 on Software Design is a good starting point
and includes a bibliography.
Every software product is unique - The goal of4.
manufacturing physical products is to produce
replicated copies that are as nearly identical as much
as possible, given the constraints of material sciences
and manufacturing tools and techniques. Because
replication of existing software is a trivial process (as
compared to manufacturing of physical products), the
goal of software development is to produce one
perfect copy (or as nearly perfect as can be achieved
given the constraints on schedule, budget, resources,
and technology). Much of software development



involves altering existing software. The resulting
product, whether new or modified, is uniquely
different from all other software products known to
the software developers. Chapter 3 of the SWEBOK
provides discussion of software reuse and several
references.
In many cases, requirements allocated to5.
software must be renegotiated and reprioritized
- Software engineers often see more efficient and
effective ways to restate and prioritize requirements
allocated to software. Sometimes, the renegotiated
requirements have system-wide impacts that must be
taken into account. One or more senior software
engineers should be, and often are, involved in
analysis of system-level requirements. This topic is
addressed in the SWEBOK in Chapter 1, with topics on
the iterative nature of software and change
management.
Software requirements are prone to frequent6.
change - Software is the most frequently changed
component in complex systems, especially late in the
development process and during system sustainment.
This is because software is perceived to be the most
easily changed component of a complex system. This
is not to imply that changes to software requirements
and the resulting changes to the impacted software
can be easily done without undesired side effects.
Careful software configuration management is
necessary, as discussed in Chapter 6 of the SWEBOK,
which includes extensive references.
Small changes to software can have large7.
negative effects (A corollary to frequently changing
software requirements: There are no small software
changes) - In several well-known cases, modifying a
few lines of code in very large systems that
incorporated software negatively impacted the safety,
security, and/or reliability of those systems. Applying
techniques such as traceability, impact analysis,
object-oriented software development, and regression
testing reduces undesired side effects of changes to
software code. These approaches limit but do not
eliminate this problem.
Some quality attributes for software are8.
subjectively evaluated - Software typically provides
the interfaces to systems that have human users and
operators. The intended users and operators of these



systems often subjectively evaluate quality attributes,
such as ease of use, adaptability, robustness, and
integrity. These quality attributes determine the
acceptance of a system by its intended users and
operators. In some cases, systems have been rejected
because they were not judged to be suitable for use
by the intended users in the intended environment,
even though those systems satisfied their technical
requirements. Chapter 10 of the SWEBOK provides an
overview of software quality, with references.
The term prototyping has different connotations9.
for systems engineers and software engineers -
For a systems engineer, a prototype is typically the
first functioning version of hardware. For software
engineers, software prototyping is primarily used for
two purposes: (1) as a mechanism to elicit user
requirements by iteratively evolving mock-ups of user
interfaces, and (2) as an experimental implementation
of some limited element of a proposed system to
explore and evaluate alternative algorithms. Chapter
1 of the SWEBOK discusses this and provides excellent
references.
Cyber security is a present and growing concern10.
for systems that incorporate software - In
addition to the traditional specialty disciplines of
safety, reliability, and maintainability, systems
engineering teams increasingly include security
specialists at both the software level and the systems
level in an attempt to cope with the cyber-attacks that
may be encountered by systems that incorporate
software. Additional information about System
Security can be found in the Systems Engineering and
Quality Attributes Part.
Software growth requires spare capacity -11.
Moore’s Law no longer fully comes to the rescue
(Moore, 1965). As systems adapt to changing
circumstances, the modifications can most easily be
performed and upgraded in the software, requiring
additional computer execution cycles and memory
capacity (Belady and Lehman 1979). For several
decades, this growth was accommodated by Moore’s
Law, but recent limits that have occurred as a result of
heat dissipation have influenced manufacturers to
promote potential computing power growth by slowing
down the processors and putting more of them on a
chip. This requires software developers to revise their

http://sandbox.sebokwiki.org/System_Safety
http://sandbox.sebokwiki.org/System_Reliability,_Availability,_and_Maintainability
http://sandbox.sebokwiki.org/System_Reliability,_Availability,_and_Maintainability
http://sandbox.sebokwiki.org/System_Security
http://sandbox.sebokwiki.org/System_Security
http://sandbox.sebokwiki.org/Systems_Engineering_and_Quality_Attributes
http://sandbox.sebokwiki.org/Systems_Engineering_and_Quality_Attributes


programs to perform more in parallel, which is often
an extremely difficult problem (Patterson 2010). This
problem is exacerbated by the growth in mobile
computing and limited battery power.
Several Pareto 80-20 distributions apply to12.
software - These refers to the 80% of the avoidable
rework that comes from 20% of the defects, that 80%
of the defects come from 20% of the modules, and
90% of the downtime comes from at most 10% of the
defects (Boehm and Basili 2001). These, along with
recent data indicating that 80% of the testing
business value comes from 20% of the test cases
(Bullock 2000), indicate that much more cost-effective
software development and testing can come from
determining which 20% need the most attention.
Software estimates are often inaccurate - There13.
are several reasons software estimates are frequently
inaccurate. Some of these reasons are the same as
the reasons systems engineering estimates are often
inaccurate: unrealistic assumptions, vague and
changing requirements, and failure to update
estimates as conditions change. In addition, software
estimates are often inaccurate because productivity
and quality are highly variable among seemingly
similar software engineers. Knowing the performance
characteristics of the individuals who will be involved
in a software project can greatly increase the
accuracy of a software estimate. Another factor is the
cohesion of the software development team. Working
with a team that has worked together before and
knowing their collective performance characteristics
can also increase the accuracy of a software estimate.
Conversely, preparing an estimate for unknown teams
and their members can result in a very low degree of
accuracy. Chapter 7 of the SWEBOK briefly discusses
this further. Kitchenam (1997) discusses the
organizational context of uncertainty in estimates.
Lederer and Prasad (1995) also identify organizational
and management issues that increase uncertainty;
additionally, a recent dissertation from Sweden by
Magazinus (2012) shows that the issues persist.
Most software projects are conducted14.
iteratively - "Iterative development" has a different
connotation for systems engineers and software
engineers. A fundamental aspect of iterative software
development is that each iteration of a software

http://sandbox.sebokwiki.org/Guide_to_the_Software_Engineering_Body_of_Knowledge_(SWEBOK)


development cycle adds features and capabilities to
produce a next working version of partially completed
software. In addition, each iteration cycle for software
development may occur on a daily or weekly basis,
while (depending on the scale and complexity of the
system) the nature of physical system components
typically involves iterative cycles of longer durations.
Classic articles on this include (Royce 1970) and
(Boehm 1988), among others. Larman and Basili
(2003) provide a history of iterative development, and
the SWEBOK discusses this in life cycle processes in
Chapter 8.
Teamwork within software projects is closely15.
coordinated - The nature of software and its
development requires close coordination of work
activities that are predominately intellectual in nature.
Certainly, other engineers engage in intellectual
problem solving, but the collective and ongoing daily
problem solving required of a software team requires
a level of communication and coordination among
software developers that is of a different, more
elevated type. Highsmith (2000) gives a good
overview.
Agile development processes are increasingly16.
used to develop software - Agile development of
software is a widely used and growing approach to
developing software. Agile teams are typically small
and closely coordinated, for the reasons cited above.
Multiple agile teams may be used on large software
projects, although this is highly risky without an
integrating architecture (Elssamadisy and Schalliol
2002). Agile development proceeds iteratively in
cycles that produce incremental versions of software,
with cycle durations that vary from one day to one
month, although shorter durations are more common.
Among the many factors that distinguish agile
development is the tendency to evolve the detailed
requirements iteratively. Most agile approaches do not
produce an explicit design document. Martin (2003)
gives a highly cited overview.
Verification and validation (V&V) of software17.
should preferably proceed incrementally and
iteratively - Iterative development of working
product increments allows incremental verification,
which ensures that the partial software product
satisfies the technical requirements for that



incremental version; additionally, it allows for the
incremental validation (ISO/IEC/IEEE 24765) of the
partial product to make certain that it satisfies its
intended use, by its intended users, in its intended
environment. Incremental verification and validation
of working software allows early detection and
correction of encountered problems. Waiting to
perform integration, verification, and validation of
complex systems until later life cycle stages, when
these activities are on the critical path to product
release, can result in increased cost and schedule
impacts. Typically, schedules have minimal slack time
during later stages in projects. However, with iterative
V&V, software configuration management processes
and associated traceability aspects may become
complex and require special care to avoid further
problems. Chapter 4 of the SWEBOK discusses
software testing, and provides numerous references,
including standards. Much has been written on the
subject; a representative article is (Wallace and Fujii
1989).
Performance trade-offs are different for18.
software than systems - Systems engineers use
“performance” to denote the entire operational
envelope of a system; whereas software engineers
use “performance” to mean response time and the
throughput of software. Consequentially, systems
engineers have a larger design space in which to
conduct trade studies. In software, performance is
typically enhanced by reducing other attributes, such
as security or ease of modification. Conversely,
enhancing attributes such as security and ease of
modification typically impacts performance of
software (response time and throughput) in a negative
manner.
Risk management for software projects differs19.
in kind from risk management for projects that
develop physical artifacts - Risk management for
development of hardware components is often
concerned with issues such as supply chain
management, material science, and
manufacturability. Software and hardware share some
similar risk factors: uncertainty in requirements,
schedule constraints, infrastructure support, and
resource availability. In addition, risk management in
software engineering often focuses on issues that



result from communication problems and coordination
difficulties within software development teams, across
software development teams, and between software
developers and other project members (e.g., hardware
developers, technical writers, and those who perform
independent verification and validation). See (Boehm
1991) for a foundational article on the matter.
Software metrics include product measures and20.
process measures - The metrics used to measure
and report progress of software projects include
product measures and process (ISO/IEC/IEEE 24765)
measures. Product measures include the amount of
software developed (progress), defects discovered
(quality), avoidable rework (defect correction), and
budgeted resources used (technical budget, memory
and execution cycles consumed, etc.). Process
measures include the amount of effort expended
(because of the people-intensive nature of software
development), productivity (software produced per
unit of effort expended), production rate (software
produced per unit time), milestones achieved and
missed (schedule progress), and budgeted resources
used (financial budget). Software metrics are often
measured on each (or, periodically, some) of the
iterations of a development project that produces a
next working version of the software. Chapter 8 and
Chapter 7 of the SWEBOK address this.
Progress on software projects is sometimes21.
inadequately tracked - In some cases, progress on
software projects is not adequately tracked because
relevant metrics are not collected and analyzed. A
fundamental problem is that accurate tracking of a
software project depends on knowing how much
software has been developed that is suitable for
delivery into the larger system or into a user
environment. Evidence of progress in the form of
working software is one of the primary advantages of
the iterative development of working software
increments.

References

Works Cited

Belady,  L.  and  M.  Lehman.  1979.  "Characteristics  of
large systems." In P. Wegner (ed.), Research Directions



in  Software  Technology.  Cambridge,  MA,  USA:  MIT
Press.

Boehm, B. 1991. "Software risk management: Principles
and practices." IEEE Software. 8(1):32-41.

Boehm,  B.  and  V.  Basili.  2001.  "Software  defect
reduction  Top  10  List."  Computer.  34(1):135-137.

Brooks, F. 1995. The Mythical Man-Month, Anniversary
Edition. Boston, MA, USA: Addison Wesley Longman Inc.

Bullock,  J.  2000.  "Calculating  the  value  of  testing."
Software  Testing  and  Quality  Engineering,  May-June,
56-62.

DeMarco, T. and T. Lister. 1987. Peopleware: Predictive
Projects and Teams. New York, NY, USA: Dorset House.

Elssamadisy, A. and G. Schalliol. 2002. "Recognizing and
responding  to  'bad  smells'  in  extreme programming."
Proceedings, ICSE 2002, ACM-IEEE, 617-622.

Fairley,  R.E.  and  M.J.  Willshire.  2011.  "Teaching
software  engineering  to  undergraduate  systems
engineering  students."  Proceedings  of  the  2011
American  Society  for  Engineering  Education  (ASEE)
Annual  Conference  and  Exposition.  26-29  June  2011.
Vancouver, BC, Canada.

Kitchenham, B. 1997. "Estimates, uncertainty, and risk."
IEEE Software. 14(3): 69-74.

Larman,  C.  and  V.R.  Basili.  2003.  "Iterative  and
incremental developments: A brief history." Computer.
36(6): 47-56.

Lederer, A.L. and J. Prasad. 1995. "Causes of inaccurate
software  development  cost  estimates."  Journal  of
Systems  and  Software.  31(2):125-134.

Magazinius,  A.  2012.  Exploring  Software  Cost
Estimation Inaccuracy. Doctoral Dissertation. Chalmers
University of Technology. Goteborg, SE.

Martin,  R.C.  2002.  Agile  Software  Development:
Principles, Patterns and Practices. Upper Saddle River,
NJ, USA: Prentice Hall.

Moore,  G.E.  1965.  "Cramming more components onto
integrated circuits," Electronics Magazine, April 19, 4.

Patterson, D. 2010. "The trouble with multicore." IEEE
Spectrum, July, 28-32, 52-53.



Royce, W.W. 1970. "Managing the development of large
software  systems."  Proceedings  of  IEEE  WESCON.
August  1970.

Wallace, D.R. and R.U. Fujii. 1989. "Software verification
and validation: An overview." IEEE Software. 6(3):10-17.

Zuse, Horst. 1991. Software complexity: Measures and
methods. Hawthorne, NJ, USA: Walter de Gruyter and
Co.

Primary References

Bourque, P. and R.E. Fairley (eds.). 2014. Guide to the
Software  Engineering  Body  of  Knowledge  (SWEBOK).
Los  Alamitos,  CA,  USA:  IEEE  Computer  Society.
Available  at:  http://www.Swebok.org.

Brooks,  Fred  1995.  The  Mythical  Man-Month,
Anniversary  Edition.  Reading,  Massachusetts:  Addison
Wesley.

Fairley,  R.E.  2009.  Managing  and  Leading  Software
Projects. Hoboken, NJ, USA: John Wiley & Sons.

PMI. 2013A. A Guide to the Project Management Body of
Knowledge|(PMBOK® Guide). 5th ed. Newtown Square,
PA, USA: Project Management Institute (PMI).

Additional References

PMI 2013B. Software Extension to the PMBOK® Guide,
Fifth  Edition,  Newtown  Square,  PA,  USA:  Project
Management Institute (PMI) and Los Alamitos, CA, USA:
IEEE Computer Society.

Pyster, A., M. Ardis, D. Frailey, D. Olwell, A. Squires.
2010.  "Global  workforce  development  projects  in
software  engineering."  Crosstalk  -  The  Journal  of
Defense  Software  Engineering,  Nov/Dec,  36-41.
A v a i l a b l e  a t :
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA535633
Accessed 02 Dec 2015.

< Previous Article | Parent Article | Next Article >
SEBoK v. 2.10, released 06 May 2024

Retrieved from
"https://sandbox.sebokwiki.org/index.php?title=Key_Points_a_System
s_Engineer_Needs_to_Know_about_Software_Engineering&oldid=716

http://sandbox.sebokwiki.org/Guide_to_the_Software_Engineering_Body_of_Knowledge_(SWEBOK)
http://sandbox.sebokwiki.org/Guide_to_the_Software_Engineering_Body_of_Knowledge_(SWEBOK)
http://www.Swebok.org
http://sandbox.sebokwiki.org/The_Mythical_Man-Month
http://sandbox.sebokwiki.org/Managing_and_Leading_Software_Projects
http://sandbox.sebokwiki.org/Managing_and_Leading_Software_Projects
http://sandbox.sebokwiki.org/A_Guide_to_the_Project_Management_Body_of_Knowledge
http://sandbox.sebokwiki.org/A_Guide_to_the_Project_Management_Body_of_Knowledge
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA535633
http://sandbox.sebokwiki.org/An_Overview_of_the_SWEBOK_Guide
http://sandbox.sebokwiki.org/Systems_Engineering_and_Software_Engineering
http://sandbox.sebokwiki.org/Software_Engineering_Features_-_Models,_Methods,_Tools,_Standards,_and_Metrics
https://sandbox.sebokwiki.org/index.php?title=Key_Points_a_Systems_Engineer_Needs_to_Know_about_Software_Engineering&oldid=71614
https://sandbox.sebokwiki.org/index.php?title=Key_Points_a_Systems_Engineer_Needs_to_Know_about_Software_Engineering&oldid=71614


14"

This page was last edited on 2 May 2024, at 22:49.

https://sandbox.sebokwiki.org/index.php?title=Key_Points_a_Systems_Engineer_Needs_to_Know_about_Software_Engineering&oldid=71614

