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Model-based Systems Engineering [MBSE] is a paradigm
that uses formalized representations of systems, known
as models, to support and facilitate the performance of
Systems Engineering [SE] tasks throughout a system’s
life  cycle.  MBSE is  frequently  contrasted with  legacy
document-based approaches where systems engineering
captures  system  design  information  via  multiple
independent  documents  in  various  non-standardized
formats.  MBSE consolidates  of  system information  in
system  design  models,  which  provide  primary  SE
artifacts.  These  system  models,  which  are  generally
expressed in a standardized modelling language such as
Systems  Modeling  Language  [SysML®]  express  key
system information in a concise, consistent, correct, and
coherent  format.  When  implemented  properly,  MBSE
models  permit  the  standardized  consolidation  and
integration  of  system  knowledge  across  engineering
disciplines and subsystems and streamline key systems
engineering tasks while also minimizing developmental
risk.

This  article  provides  an  overview  of  key  concepts
underlying  model-based  approaches  to  systems
engineering  and  highlights  the  benefits  of  utilizing
MBSE on projects.
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System Models
During the systems engineering process, a substantial
amount  of  information is  collected,  generated,  and/or
maintained  regarding  the  characteristics  of  the
system(s)  of  interest,  composite  elements,  and
interacting entities/environments. MBSE utilizes models
as a means of aggregating and managing these disparate
pieces of  information about a system in a centralized
repository that can serve as a ‘single source of truth’ and
technical baseline regarding a system of interest.

Definitions

Models  are  representations  that  are  used to  capture,
analyze, and/or communicate information about a system
or concept. They can vary in scope, purpose, and type,
and  can  be  utilized  both  individually  as  stand-alone
entities as well as in concert with each other as part of
an integrated set (Wymore 1993).

Properties of System Models

A model can be described and classified with respect to
the following properties:

Scope: the range of relevance of a model. Models can
range from capturing the characteristics and
interactions of a system’s components (broad scope),
to only focusing on the form and function of a single



element in isolation (narrow scope).
Domain: the ‘lens’ through which the model views a
system. Models can be holistic in nature or can focus
on only highlighting information relevant to certain
domains. Domain-specific models generally are used
to highlight certain “perspectives” of a system,
whether from the lens of a particular application
sector (e.g., aerospace, biomedicine), discipline (e.g.,
electrical, mechanical, thermal), subsystem, or system
property (e.g., power, reliability, fault management).
Formality: the model’s level of adherence to
formalized standards for information expression.
Models can express information about systems with
varying degrees of precision. The most fundamental of
models, which simply express a basic representation
of a system in an unspecified format, do not convey
information with precision and are considered
informal. The most formal models comply with well-
developed, pre-defined standards (formalisms) for
content and organization, which collectively define
‘languages’ that enable consistent and precise
interpretations of models.
Abstraction: the degree to which a model suppresses
or excludes out-of-scope, unimportant, or irrelevant
details. Abstraction is a necessity with large and
complex systems where it is impractical to replicate
every aspect of a given system within a reasonable
time and resource expenditure margin.
Physical/conceptual: whether the model is concrete in
nature (i.e., a physical model) or fully conceptual (i.e.,
an abstract model).
Descriptive/analytical: whether a model details
qualitative aspects of a system such as requirements,
behaviors, or physical architecture (descriptive
model), provides a representation of quantitative
aspects of the system such as mass, reliability, power
consumption via mathematical relationships
(analytical model), or both (hybrid model).
Fidelity: the degree to which a model
comprehensively captures details about a system’s
characteristics, ranging from models which only
capture general information about a system to those
which seek to faithfully capture as much detail about
the system as possible.
Completeness: the extent to which a model captures



all relevant domain- information within its scope and
at its intended level of detail.
Integration: the extent to which a model interacts and
interfaces with other relevant models describing the
system of interest or other related/interacting entities.
Quality: the degree to which the model (not the
system it represents) meets the needs of the
individuals performing systems engineering activities.
A high-quality model should be readily usable, have
minimal ambiguity, and provide accurate, relevant
information needed to support tasks associated with
the design, development, operation, and/or
maintenance of a system.

Of these properties,  formalization and abstraction are
generally the most frequently discussed in relation to
MBSE (Vogelsang et al. 2017) as they have the greatest
impact on whether a model can be effectively used as
part of an MBSE workflow.

Criteria for Effective MBSE Models

While a successful MBSE workflow can involve the use
of several different interconnected or standalone models
of various scopes and types based on user needs, the
main  system  model  in  an  MBSE  projects  generally
should have the following characteristics:

A scope which matches the scope of the project (i.e.,1.
it should encompass the entire system of interest);
Representative of a holistic perspective from all2.
relevant domains.
Strict compliance with a previously established3.
standardized modeling language, whether that be an
existing language such as SysML® or a custom
formalism.
Fully abstracted, to only include relevant information4.
appropriate for the system of interest and its desired
use-case(s).
Conceptual in nature, to permit the capture of5.
intangible information (e.g., system requirements)
Containing a description of the system functional and6.
structural architecture at minimum and supplemented
by integrated analytical/quantitative property
descriptions as needed.
Demonstrating sufficient fidelity to capture relevant7.



system elements and behavior.
Fully complete given its scope.8.
Integrated with any necessary auxiliary models.9.
Sufficiently high-quality as to meet the needs of those10.
designing, developing, or otherwise working on the
system.

In  terms  of  content,  effective  system  models  are
expected to capture key system information regarding
requirements,  system  functionality/behavior,
structure/form,  properties,  and  interconnections
between  system  components.

Modeling Languages
Modeling  languages  are  specifications  which  provide
standardized  guidelines  and  structures  for  expressing
system  information.  These  languages,  which  provide
both the structures or ‘syntax’ in which the information
can be expressed, as well as the ‘semantics’ that govern
the way in which the information should be interpreted,
can be selected based on user preferences and needs.
Different languages utilize different formats to express
information (e.g.,  visual or textual means),  as well  as
different  paradigms  (e.g.,  object-oriented,  functional,
etc.) in order to group information. Visual languages are
generally preferred for modeling due to being readily
readable,  and object-oriented modeling languages  are
frequently used in systems engineering contexts since
they readily lend themselves to systems which can be
decomposed,  or  otherwise  thought  of,  in  terms  of
objects.

SysML®, an extension of  Unified Modeling Language
[UML] for systems engineering,  is  a one of  the more
frequently used modeling languages for MBSE. It is an
graphical language that utilizes diagrams and tables in
order  to  express  system information,  and  provides  a
standard set of nine diagram types which can be used to
organize and express system information (Friedenthal,
Moore, and Steiner 2014). The collective diagrams (each
of which can be considered a model in its own right),
when interconnected, provide a means of representing
system  structure,  behavior,  and  requirements  in
abstracted form. A number of other options have been
proposed as architecture description languages [ADLs]
for  specifically  modeling  system  architectures.
ISO/IEC/IEEE 42010 (Systems and software engineering
-  Architecture  description)  specifies  minimum
requirements for a language to qualify as an ADL (ISO



2011).

MBSE users have the option of using SysML®, a similar
graphical-language  option  like  UML,  a  domain  or
framework specific language, or potentially developing a
custom formalism for their team or organization (Bonnet
et al. 2016). It is possible to formalize textual documents
to  create  models,  though  doing  so  requires  the
establishment of a domain dictionary in order to remove
the ambiguity inherent in diction choice, as well as the
use  of  rigid  grammatical  structures  which  may  limit
readability.

Regardless of what modeling language is used for an
MBSE  project,  it  is  important  that  the  language  be
inherently  scalable,  standardized,  readable,  reusable,
and abstractable to enable the development of effective
MBSE models.

Architecture Frameworks
A  second  layer  of  structure  that  exists  overtop  a
modeling  language  is  an  architecture  framework.
Architecture  frameworks  are  used  to  organize  the
information expressed via modeling language. Whereas a
modeling  language  provides  the  structure  needed  to
express multiple ‘views’ (diagrams) of system elements
and their interactions, architecture frameworks enable
the user to group those views based on the elements
they represent, and organize them in a way that allows
traceability,  eases  navigation  through the  model,  and
aids in the identification of missing information (e.g., an
omitted element). Architecture frameworks are a specific
type  of  pattern  that  frequently  get  defined  and
standardized  for  MBSE  models.  There  are  also
organization- and domain-specific design patterns that
can be employed in MBSE models to meet stakeholder
needs in more specific model use-cases.

Architecture frameworks and model design patterns play
an important role in enabling the re-use of MBSE models
(Wu et al. 2019), as certain architectural design patterns
may be frequently used across multiple projects even
when  the  specifications  of  the  individual  components
differ (e.g. building a house with the same structure but
different  décor).  By  organizing  a  system model  in  a
sufficiently  abstracted  manner,  it  may  be  possible  to
identify the points of difference between an old project
and a new one and make the appropriate changes to
element properties in the model without having to redo
the entire model development process.



Process Frameworks
The  MBSE  model  development  workflow  can  be
streamlined  using  pre-defined  process  frameworks,
which  provide  tailorable  guidelines  and  patterns  for
integrating MBSE into the generic systems engineering
process. While process frameworks are typically defined
on  an  organizational  level,  they  generally  all  exhibit
some form of configuration management process, access
guidelines, practices for updating the model, and means
of  integrating  the  MBSE model  into  all  or  nearly  all
systems engineering lifecycle activities. The benefits of
MBSE usage are limited when the system model falls out
of  date  or  otherwise  becomes  inaccurate,  so  regular
model updates are a minimum requirement for MBSE
process frameworks.

For smaller projects, the MBSE process framework may
be as simple as utilizing the version control features that
come included as part of many collaborative modeling
software  platforms  and  integrating  model  usage  and
periodic  updates  as  checkpoints  in  the  systems
engineering  process.  More  complex  projects  can
formalize MBSE process frameworks in a manner that
can be verified against configuration management and
systems engineering management  plans  (Fisher  et  al.
2014).

Benefits of MBSE
The MBSE workflow and the creation of a centralized
system  model  emphasizes  a  holistic,  standards-based
approach  to  systems  engineering  (Madni  and  Sievers
2018).  Since the creation of  a system model requires
reconciliation of information from multiple domains and
subsystems,  inconsistencies  and  defects  are  readily
identifiable  during  the  modeling  process  (Carroll  and
Malins 2016) and can be addressed or eliminated earlier
on in the system lifecycle process than would otherwise
be done in a document-based workflow. Similarly, the
centralization  and  standardization  of  information
ensures  a  reduction  in  miscommunications  and  other
development risks since all project team members are
using  the  same  source  of  information  for  reference.
Format standardization also makes it easier to search for
and extract information, compared to a document-based
workflow where  information is  stored across  multiple
documents in different formats.

More  broadly,  MBSE  provides  a  better  means  of
managing  complexity  than  document-based  using



formalized structures and abstraction. Cross-referencing
within MBSE models makes it possible to begin design
verification,  requirements  validation,  and  systems
assurance  earlier  on  in  the  system  lifecycle,  and  to
continue assessing system design quality throughout a
project at minimum cost. Furthermore, models can be
reused and adapted for similar systems, which enables
accelerated system development with minimal risk.

Digital Transformation

While  DBSE  has  traditionally  been  the  paradigm  of
preference  for  artifact  generation  and  for  supporting
systems engineering efforts in the pre-digital age, digital
transformation  of  the  generic  systems  engineering
workflow in recent years has catalyzed the widespread
adoption  of  MBSE  and  broader  model-based  [MBx]
approaches.  Digital  environments  and  software  tools
have made it easier and faster to generate, maintain, and
use system models, especially in a collaborative setting
(Ma et al. 2022). If implemented appropriately, digital
MBSE models can be used to programmatically identify
inconsistencies, enable interactive simulations of system
behavior, simultaneously propagate changes across an
entire  project  (rather  than  updating  artifacts  one-by-
one), automatically generate document-based artifacts,
and more. The advent of new software for supporting
and automating systems engineering tasks has opened
additional  avenues  for  expanding  the  capabilities  of
system models,  and for increasing the efficiency with
which systems engineering tasks can be performed.

Digital Twins

When MBSE models of physical systems are built with
sufficient  completeness  and  fidelity,  it  is  possible  for
them to function as ‘digital twins’ of the systems they
represent. Digital twins provide a means of accurately
representing a system’s form and function throughout
the system’s lifecycle, all within a digital environment.
Creating  such  digital  twins  provides  number  of
advantages,  including  allowing  individuals  to  perform
testing, analysis, and optimization of systems in a virtual
environment at no risk to the actual system of interest
and often  at  a  greatly  reduced cost/burden (Schluse,
Atorf, and Rossmann 2017). Digital twins also make it
possible  to  represent  the  behavior  of  systems  under
conditions which would be impractical or impossible to
induce under experimental conditions, thereby making it
possible to obtain information not obtainable via study of



the original physical system.

MBSE versus DBSE
Although  MBSE  and  document-based  approaches  are
usually  presented  as  alternatives  to  each  other,  it  is
possible  to  use  MBSE  and  document-based  in
conjunction with each other on the same project. In work
environments  where  document-based  is  the  norm,
stakeholders may expect or require the submission of
textual document artifacts, or there may be issues with a
lack of  familiarity with any modeling languages (Kim,
Wagner, and Jimenez 2019); in such instances, it may be
necessary to utilize a hybrid approach where documents
are  generated  from  the  design  model  as  static
representations of the system for project milestones.
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