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This topic forms part of the Systems Thinking knowledge
area (KA). It identifies systems patterns as part of the
basic  ideas  of  systems  thinking.  The  general  idea  of
patterns and a  number of  examples are described.  A
brief  conclusion  discusses  the  maturity  of  systems
science from the perspective of principles and patterns.
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Systems Patterns
This  section  first  discusses  definitions,  types,  and
pervasiveness  of  patterns.  Next,  samples  of  basic
patterns in the form of hierarchy and network patterns,
metapatterns, and systems engineering (SE) patterns are
discussed.  Then  samples  of  patterns  of  failure  (or
“antipatterns”)  are  presented  in  the  form  of  system
archetypes,  along  with  antipatterns  in  software
engineering and other fields. Finally, a brief discussion
of patterns as maturity indicators is given.

Pattern Definitions and Types

The most general definition of pattern is that it is an
expression of an observed regularity. Patterns exist in
both natural and artificial systems and are used in both
systems science and systems engineering (SE). Theories
in science are patterns. Building architecture styles are
patterns. Engineering uses patterns extensively.

Patterns are a representation of similarities in a set or
class  of  problems,  solutions  or  systems.  In  addition,
some  patterns  can  also  represent  uniqueness  or
differences, e.g., uniqueness pattern or unique identifier,
such as automobile vehicle identification number (VIN),
serial  number  on  a  consumer  product,  human
fingerprints,  DNA.  The  pattern  is  that  a  unique
identifier, common to all instances in a class (such as a
fingerprint), distinguishes between all instances in that
class.

The term pattern has been used primarily in building
architecture and urban planning (Alexander et al. 1977,
Alexander  1979)  and  in  software  engineering  (e.g.,
Gamma  et  al.  1995;  Buschmann  et  al.  1996).  Their
definitions portray a pattern as capturing design ideas as
an archetypal and reusable description. A design pattern
provides a generalized solution in the form of templates
to a commonly occurring real-world problem within a
given context. A design pattern is not a finished design
that can be transformed directly into a specific solution.
It is a description or template for how to solve a problem
that can be used in many different specific situations
(Gamma et al. 1995; Wikipedia 2012b). Alexander placed
significant emphasis on the pattern role of reconciling
and resolving competing forces, which is an important
application of the yin yang principle.

Other examples of general patterns in both natural and
engineered  systems  include:  conventional  designs  in



engineering handbooks, complex system models such as
evolution  and  predator-prey  models  that  apply  to
multiple  application  domains,  domain  taxonomies,
architecture  frameworks,  standards,  templates,
architecture  styles,  reference  architectures,  product
lines,  abstract  data  types,  and  classes  in  class
hierarchies (Hybertson 2009). Shaw and Garlan (Garlan
1996) used the terms pattern and style interchangeably
in  discussing  software  architecture.  Lehmann  and
Belady (Lehmann 1985) examined a set of engineered
software systems and tracked their  change over time
and  observed  regularities  that  they  captured  as
evolution  laws  or  patterns.

Patterns have been combined with model-based systems
engineering (MBSE) to  lead to  pattern-based systems
engineering (PBSE) (Schindel and Smith 2002, Schindel
2005).

Patterns also exist in systems practice, both science and
engineering. At the highest level, Gregory (1966) defined
science and design as behavior patterns:

The  scientific  method  is  a  pattern  of
problem-solving  behavior  employed  in
finding  out  the  nature  of  what  exists,
whereas the design method is a pattern of
behavior employed in inventing things of
value which do not yet exist.

Regularities  exist  not  only  as  positive  solutions  to
recurring problems, but also as patterns of failure, i.e.,
as commonly attempted solutions that consistently fail to
solve recurring problems. In software engineering these
are called antipatterns, originally coined and defined by
Koenig  (1995).  An  antipattern  is  just  like  a  pattern,
except that instead of a solution it gives something that
looks superficially like a solution but isn’t one. Koenig’s
rationale was that if one does not know how to solve a
problem, it may nevertheless be useful to know about
likely blind alleys. Antipatterns may include patterns of
pathologies (i.e., common diseases), common impairment
of normal functioning, and basic recurring problematic
situations.  These  antipatterns  can  be  used  to  help
identify the root cause of a problem and eventually lead
to solution patterns. The concept was expanded beyond
software to include project management, organization,
and other antipatterns (Brown et al. 1998; AntiPatterns
Catalog 2012).

Patterns are grouped in the remainder of this section



into  basic  foundational  patterns  and  antipatterns  (or
patterns of failure).

Basic Foundational Patterns

The basic  patterns in  this  section consist  of  a  set  of
hierarchy and network patterns,  followed by a  set  of
metapatterns and SE patterns.

Hierarchy and Network Patterns

The first group of patterns are representative types of
hierarchy  patterns  distinguished  by  the  one-to-many
relation type (extended from Hybertson 2009,  90),  as
shown  in  the  table  below.  These  are  presented  first
because  hierarchy  patterns  infuse  many  of  the  other
patterns discussed in this section.

Table 1. Hierarchy Patterns. (SEBoK Original)
Relation Hierarchy Type or Pattern

Basic: Repeating One-to-
Many Relation General: Tree structure

Part of a Whole Composition (or Aggregation)
hierarchy

Part of + Dualism: Each
element in the hierarchy is
a holon, i.e., is both a
whole that has parts and a
part of a larger whole

Holarchy (composition
hierarchy of holons) (Koestler
1967) - helps recognize
similarities across levels in
multi-level systems

Part of +
Interchangeability: The
parts are clonons, i.e.,
interchangeable

Composition Hierarchy of
Clonons (Bloom 2005).
Note: This pattern reflects
horizontal similarity.

Part of + Self-Similarity: At
each level, the shape or
structure of the whole is
repeated in the parts, i.e.,
the hierarchy is self-similar
at all scales.

Fractal.
Note: This pattern reflects
vertical similarity.

Part of + Connections or
Interactions among Parts

System composition
hierarchy

Control of Many by One Control hierarchy—e.g., a
command structure

Subtype or Sub-Class
Type or specialization
hierarchy; a type of
generalization

Instance of Category
Categorization (object-class;
model-metamodel…)
hierarchy; a type of
generalization



Network patterns are of two flavors.  First,  traditional
patterns  are  network  topology  types,  such  as  bus
(common backbone), ring, star (central hub), tree, and
mesh  (multiple  routes)  (ATIS  2008).  Second,  the
relatively  young  science  of  networks  has  been
investigating social and other complex patterns, such as
percolation,  cascades,  power  law,  scale-free,  small
worlds,  semantic  networks,  and  neural  networks
(Boccara  2004;  Neumann  et  al.  2006).

Metapatterns

The  metapatterns  identified  and  defined  in  the  table
below are from (Bloom 2005), (Volk and Bloom 2007),
and (Kappraff  1991).  They describe a  metapattern as
convergences  exhibited  in  the  similar  structures  of
evolved systems across  widely  separated scales  (Volk
and Bloom 2007).

Table 2. Metapatterns. (SEBoK Original)

Name Brief
Definition Examples

Spheres

Shape of
maximum
volume,
minimum
surface,
containment

Cell, planet, dome, ecosystem,
community

Centers
Key
components of
system stability

Prototypes, purpose, causation;
Deoxyribonucleic acid (DNA), social
insect centers, political constitutions
and government, attractors

Tubes
Surface
transfer,
connection,
support

Networks, lattices, conduits, relations;
leaf veins, highways, chains of
command

Binaries
Plus

Minimal and
thus efficient
system

Contrast, duality, reflections, tensions,
complementary/symmetrical/reciprocal
relationships; two sexes, two-party
politics, bifurcating decision process

Clusters,
Clustering

Subset of webs,
distributed
systems of
parts with
mutual
attractions

Bird flocks, ungulate herds, children
playing, egalitarian social groups

Webs or
Networks

Parts in
relationships
within systems
(can be
centered or
clustered, using
clonons or
holons)

Subsystems of cells, organisms,
ecosystems, machines, society



Sheets
Transfer
surface for
matter, energy,
or information

Films; fish gills, solar collectors

Borders
and Pores

Protection,
openings for
controlled
exchange

Boundaries, containers, partitions, cell
membranes, national borders

Layers

Combination of
other patterns
that builds up
order,
structure, and
stabilization

Levels of scale, parts and wholes,
packing, proportions, tiling

Similarity
Figures of the
same shape but
different sizes

Similar triangles, infant-adult

Emergence

General
phenomenon
when a new
type of
functionality
derives from
binaries or
webs.

Creation (birth), life from molecules,
cognition from neurons

Holarchies

Levels of webs,
in which
successive
systems are
parts of larger
systems

Biological nesting from biomolecules
to ecosystems, human social nesting,
engineering designs, computer
software

Holons
Parts of
systems as
functionally
unique

Heart-lungs-liver (holons) of body

Clonons
Parts of
systems as
interchangeable

Skin cells (clonons) of the skin; bricks
in constructing a house

Arrows
Stability or
gradient-like
change over
time

Stages, sequence, orientation, stress,
growth, meanders, biological
homeostasis, growth, self-maintaining
social structures

Cycles
Recurrent
patterns in
systems over
time

Alternating repetition, vortex, spiral,
turbulence, helices, rotations; protein
degradation and synthesis, life cycles,
power cycles of electricity generating
plants, feedback cycles

Breaks

Relatively
sudden
changes in
system
behavior

Transformation, change, branching,
explosion, cracking, translations; cell
division, insect metamorphosis,
coming-of-age ceremonies, political
elections, bifurcation points

Triggers
Initiating agents
of breaks, both
internal and
external

Sperm entering egg or precipitating
events of war



Gradients
Continuum of
variation
between binary
poles

Chemical waves in cell development,
human quantitative and qualitative
values

Systems Engineering Patterns

Some  work  has  been  done  on  various  aspects  of
explicitly applying patterns to SE. A review article of
much of this work was written by Bagnulo and Addison
(2010),  covering  patterns  in  general,  capability
engineering, pattern languages, pattern modeling, and
other  SE-related  pattern  topics.  Cloutier  (2005)
discussed applying patterns to SE, based on architecture
and  software  design  patterns.  Haskins  (2005),  and
Simpson and Simpson (2006) discussed the use of SE
pattern languages to enhance the adoption and use of SE
patterns.  Simpsons  identified  three  high-level,  global
patterns  that  can  be  used  as  a  means  of  organizing
systems patterns:

Anything can be described as a system.
The problem system is always separate from the
solution system.
Three systems, at a minimum, are always involved in
any system activity: the environmental system, the
product system, and the process system.

Haskins (2008) also proposed the use of patterns as a
way to  facilitate  the extension of  SE from traditional
technological  systems  to  address  social  and  socio-
technical systems. Some patterns have been applied and
identified in this extended arena, described as patterns
of  success  by  Rebovich  and  DeRosa  (2012).  Stevens
(2010)  also  discussed  patterns  in  the  engineering  of
large-scale, complex “mega-systems.”

A common SE activity in which patterns are applied is in
system  design,  especially  in  defining  one  or  more
solution  options  for  a  system-of-interest.  See
Synthesizing  Possible  Solutions  for  a  discussion.  The
more specific topic of using patterns (and antipatterns,
as  described  below)  to  understand  and  exploit
emergence  is  discussed  in  the  Emergence  topic.

Patterns of Failure: Antipatterns

System Archetypes

http://sandbox.sebokwiki.org/Synthesizing_Possible_Solutions
http://sandbox.sebokwiki.org/Emergence


The  system  dynamics  community  has  developed  a
collection  of  what  are  called  system archetypes.  The
concept was originated by Forrester (1969), while Senge
(1990) appears to have introduced the system archetype
term.  According  to  Braun  (2002),  the  archetypes
describe common patterns of behavior that help answer
the  question,  “Why  do  we  keep  seeing  the  same
problems recur over time?” They focus on behavior in
organizations and other complex social systems that are
repeatedly  but  unsuccessfully  used to  solve  recurring
problems.  This  is  why  they  are  grouped  here  under
antipatterns,  even  though  the  system  dynamics
community  does  not  refer  to  the  archetypes  as
antipatterns.  The  table  below  summarizes  the
archetypes. There is not a fixed set, or even fixed names
for a given archetype. The table shows alternative names
for some archetypes.

Table 3. System Archetypes. (SEBoK Original)
Name (Alternates) Description Reference**

Counterintuitive
Behavior

Forrester identified three
“especially dangerous”
counter-intuitive
behaviors of social
systems, which
correspond respectively
to three of the
archetypes discussed
below: (1) Low-Leverage
Policies: Ineffective
Actions; (2) High
Leverage Policies: Often
Wrongly Applied; and (3)
Long-Term vs. Short-
Term Trade-offs

F1, F2

Low-Leverage
Policies:
Ineffective Actions
(Policy
Resistance)

Most intuitive policy
changes in a complex
system have very little
leverage to create
change; this is because
the change causes
reactions in other parts of
the system that
counteract the new
policy.

F1, F3, M



High Leverage
Policies: Often
Wrongly Applied
(High Leverage,
Wrong Direction)

A system problem is
often correctable with a
small change, but this
high-leverage solution is
typically counter-intuitive
in two ways: (1) the
leverage point is difficult
to find because it is
usually far removed in
time and place from
where the problem
appears, and (2) if the
leverage point is
identified, the change is
typically made in the
wrong direction, thereby
intensifying the problem.

F1, F3, M

Long-Term vs.
Short-Term Trade-
offs (Fixes that
Fail, Shifting the
Burden,
Addiction)

Short-term solutions are
intuitive, but in complex
systems there is nearly
always a conflict or
tradeoff between short-
term and long-term
goals. Thus, a quick fix
produces immediate
positive results, but its
unforeseen and
unintended long-term
consequences worsen the
problem. Furthermore, a
repeated quick fix
approach makes it harder
to change to a more
fundamental solution
approach later.

F1, F3, M, S,
B

Drift to Low
Performance
(Eroding Goals,
Collapse of Goals)

There is a strong
tendency for complex
system goals to drift
downward. A gap
between current state
and goal state creates
pressure to lower the
goal rather than taking
difficult corrective action
to reach the goal. Over
time the continually
lowered goals lead to
crisis and possible
collapse of the system.

F1, F3, M, B



Official Addiction –
Shifting the
Burden to the
Intervener

The ability of a system to
maintain itself
deteriorates when an
intervener provides help
and the system then
becomes dependent on
the intervener.

M, S

Limits to Growth
(a.k.a. Limits to
Success)

A reinforcing process of
accelerating growth (or
expansion) will encounter
a balancing process as
the limit of that system is
approached and
continuing efforts will
produce diminishing
returns as one
approaches the limits.

S, B

Balancing Process
with Delay

Delay in the response of
a system to corrective
action causes the
correcting agent to either
over-correct or to give up
due to no visible
progress.

S

Escalation

Two systems compete for
superiority, with each
escalating its competitive
actions to get ahead, to
the point that both
systems are harmed.

B

Success to the
Successful

Growth leads to decline
elsewhere. When two
equally capable systems
compete for a limited
resource, if one system
receives more resources,
it is more likely to be
successful, which results
in its receiving even more
resources, in a
reinforcing loop.

S, B

Tragedy of the
Commons

A shared resource is
depleted as each system
abuses it for individual
gain, ultimately hurting
all who share it.

H, S, B

Growth and
Underinvestment

In a situation where
capacity investments can
overcome limits, if such
investments are not
made, then growth stalls,
which then rationalizes
further underinvestment.

S, B



Accidental
Adversaries

Two systems destroy
their relationship through
escalating retaliations for
perceived injuries.

B

Attractiveness
Principle

In situations where a
system faces multiple
limiting or impeding
factors, the tendency is
to consider each factor
separately to select
which one to address
first, rather than a
strategy based on the
interdependencies
among the factors.

B

**  B—(Braun  2002) ;  F1—(Forrester  1969) ;
F2—(Forrester 1995); F3—(Forrester 2009); H—(Hardin
1968); M—(Meadows 1982); S—(Senge 1990).

Relations  among  system  archetypes  were  defined  by
Goodman and Kleiner (1993/1994) and republished in
Senge et al. (1994).

Software and Other Antipatterns

Antipatterns have been identified and collected in the
software community in areas that include: architecture,
development,  project  management,  user  interface,
organization,  analysis,  software  design,  programming,
methodology,  and  configuration  management
(AntiPatterns  Catalog  2012,  Wikibooks  2012).  A  brief
statement of  three of  them follows;  the first  two are
organization and the third is software design.

Escalation of commitment - Failing to revoke a
decision when it proves wrong.
Moral hazard - Insulating a decision-maker from the
consequences of his or her decision.
Big ball of mud - A system with no recognizable
structure.

A link between the software community and the system
archetypes is represented in a project at the Software
Engineering Institute (SEI) (2012), which explores the
system archetypes in the context of identifying recurring
software  acquisition  problems  as  “acquisition
archetypes.” They refer to both types of archetypes as
patterns of failure.

Another set of antipatterns in the general systems arena



has  been  compiled  by  Troncale  (2010;  2011)  in  his
systems pathologies project. Sample pathology types or
patterns include:

Cyberpathologies - Systems-level malfunctions in
feedback architectures.
Nexopathologies - Systems-level malfunctions in
network architectures or dynamics.
Heteropathologies - Systems-level malfunctions in
hierarchical, modular structure & dynamics.

Some treatments of antipatterns, including Senge (1990)
and SEI (2012),  also provide some advice on dealing
with or preventing the antipattern.

Patterns and Maturity

Patterns may be used as an indicator of the maturity of a
domain of inquiry, such as systems science or systems
engineering. In a mature and relatively stable domain,
the problems and solutions are generally understood and
their similarities are captured in a variety of what are
here called patterns. A couple of observations can be
made in this regard on the maturity of systems science
in support of systems engineering.

In the arenas of physical systems and technical systems,
systems  science  is  relatively  mature;  many  system
patterns  of  both  natural  physical  systems  and
engineered  technical  systems  are  reasonably  well
defined  and  understood.

In the arena of more complex systems, including social
systems,  systems  science  is  somewhat  less  mature.
Solution patterns in that arena are more challenging. A
pessimistic view of the possibility of science developing
solutions to social problems was expressed by Rittel and
Webber  (1973)  in  their  classic  paper  on  wicked
problems:  “The  search  for  scientific  bases  for
confronting problems of social policy is bound to fail,
because . . . they are ‘wicked’ problems, whereas science
has developed to deal with ‘tame’ problems.” A more
optimistic  stance  toward  social  problems  has
characterized  the  system  dynamics  community.  They
have been pointing out for over 40 years the problems
with conventional  solutions to social  problems,  in the
form of the system archetypes and associated feedback
loop  models.  That  was  an  important  first  step.
Nevertheless,  they  have  had  difficulty  achieving  the
second  step;  producing  social  patterns  that  can  be



applied  to  solve  those  problems.  The  antipatterns
characterize problems, but the patterns for solving those
problems are elusive.

Despite  the  difficulties,  however,  social  systems  do
exhibit regularities, and social problems are often solved
to  some  degree.  The  social  sciences  and  complex
systems community have limited sets of patterns, such
as  common types  of  organization structures,  common
macro-economic  models,  and  even  patterns  of
insurgency  and counter-insurgency.  The challenge for
systems science is to capture those regularities and the
salient  features  of  those  solutions  more  broadly  and
make them explicit and available in the form of mature
patterns. Then perhaps social problems can be solved on
a more regular basis. As systems engineering expands
its  scope  from  the  traditional  emphasis  on  technical
aspects  of  systems to  the interplay of  the social  and
technical  aspects  of  socio-technical  systems,  such
progress  in  systems  science  is  becoming  even  more
important to the practice of systems engineering.
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