
Patterns of Systems
Thinking
Patterns of Systems Thinking

The printable version is no longer supported and may
have rendering errors. Please update your browser
bookmarks and please use the default browser print
function instead.

Lead Author: Rick Adcock, Contributing Authors:
Scott Jackson, Janet Singer, Duane Hybertson

This topic forms part of the Systems Thinking knowledge
area (KA). It identifies systems patterns as part of the
basic ideas of systems thinking. The general idea of
patterns and a number of examples are described. A
brief conclusion discusses the maturity of systems
science from the perspective of principles and patterns.

Contents
Systems Patterns

Pattern Definitions and Types
Basic Foundational Patterns

Hierarchy and Network Patterns
Metapatterns

Systems Engineering Patterns
Patterns of Failure: Antipatterns

System Archetypes
Software and Other Antipatterns

Patterns and Maturity
References

Works Cited
Primary References
Additional References

http://sandbox.sebokwiki.org/Patterns_of_Systems_Thinking
http://sandbox.sebokwiki.org/Systems_Thinking

Systems Patterns
This section first discusses definitions, types, and
pervasiveness of patterns. Next, samples of basic
patterns in the form of hierarchy and network patterns,
metapatterns, and systems engineering (SE) patterns are
discussed. Then samples of patterns of failure (or
“antipatterns”) are presented in the form of system
archetypes, along with antipatterns in software
engineering and other fields. Finally, a brief discussion
of patterns as maturity indicators is given.

Pattern Definitions and Types

The most general definition of pattern is that it is an
expression of an observed regularity. Patterns exist in
both natural and artificial systems and are used in both
systems science and systems engineering (SE). Theories
in science are patterns. Building architecture styles are
patterns. Engineering uses patterns extensively.

Patterns are a representation of similarities in a set or
class of problems, solutions or systems. In addition,
some patterns can also represent uniqueness or
differences, e.g., uniqueness pattern or unique identifier,
such as automobile vehicle identification number (VIN),
serial number on a consumer product, human
fingerprints, DNA. The pattern is that a unique
identifier, common to all instances in a class (such as a
fingerprint), distinguishes between all instances in that
class.

The term pattern has been used primarily in building
architecture and urban planning (Alexander et al. 1977,
Alexander 1979) and in software engineering (e.g.,
Gamma et al. 1995; Buschmann et al. 1996). Their
definitions portray a pattern as capturing design ideas as
an archetypal and reusable description. A design pattern
provides a generalized solution in the form of templates
to a commonly occurring real-world problem within a
given context. A design pattern is not a finished design
that can be transformed directly into a specific solution.
It is a description or template for how to solve a problem
that can be used in many different specific situations
(Gamma et al. 1995; Wikipedia 2012b). Alexander placed
significant emphasis on the pattern role of reconciling
and resolving competing forces, which is an important
application of the yin yang principle.

Other examples of general patterns in both natural and
engineered systems include: conventional designs in

engineering handbooks, complex system models such as
evolution and predator-prey models that apply to
multiple application domains, domain taxonomies,
architecture frameworks, standards, templates,
architecture styles, reference architectures, product
lines, abstract data types, and classes in class
hierarchies (Hybertson 2009). Shaw and Garlan (Garlan
1996) used the terms pattern and style interchangeably
in discussing software architecture. Lehmann and
Belady (Lehmann 1985) examined a set of engineered
software systems and tracked their change over time
and observed regularities that they captured as
evolution laws or patterns.

Patterns have been combined with model-based systems
engineering (MBSE) to lead to pattern-based systems
engineering (PBSE) (Schindel and Smith 2002, Schindel
2005).

Patterns also exist in systems practice, both science and
engineering. At the highest level, Gregory (1966) defined
science and design as behavior patterns:

The scientific method is a pattern of
problem-solving behavior employed in
finding out the nature of what exists,
whereas the design method is a pattern of
behavior employed in inventing things of
value which do not yet exist.

Regularities exist not only as positive solutions to
recurring problems, but also as patterns of failure, i.e.,
as commonly attempted solutions that consistently fail to
solve recurring problems. In software engineering these
are called antipatterns, originally coined and defined by
Koenig (1995). An antipattern is just like a pattern,
except that instead of a solution it gives something that
looks superficially like a solution but isn’t one. Koenig’s
rationale was that if one does not know how to solve a
problem, it may nevertheless be useful to know about
likely blind alleys. Antipatterns may include patterns of
pathologies (i.e., common diseases), common impairment
of normal functioning, and basic recurring problematic
situations. These antipatterns can be used to help
identify the root cause of a problem and eventually lead
to solution patterns. The concept was expanded beyond
software to include project management, organization,
and other antipatterns (Brown et al. 1998; AntiPatterns
Catalog 2012).

Patterns are grouped in the remainder of this section

into basic foundational patterns and antipatterns (or
patterns of failure).

Basic Foundational Patterns

The basic patterns in this section consist of a set of
hierarchy and network patterns, followed by a set of
metapatterns and SE patterns.

Hierarchy and Network Patterns

The first group of patterns are representative types of
hierarchy patterns distinguished by the one-to-many
relation type (extended from Hybertson 2009, 90), as
shown in the table below. These are presented first
because hierarchy patterns infuse many of the other
patterns discussed in this section.

Table 1. Hierarchy Patterns. (SEBoK Original)
Relation Hierarchy Type or Pattern

Basic: Repeating One-to-
Many Relation General: Tree structure

Part of a Whole Composition (or Aggregation)
hierarchy

Part of + Dualism: Each
element in the hierarchy is
a holon, i.e., is both a
whole that has parts and a
part of a larger whole

Holarchy (composition
hierarchy of holons) (Koestler
1967) - helps recognize
similarities across levels in
multi-level systems

Part of +
Interchangeability: The
parts are clonons, i.e.,
interchangeable

Composition Hierarchy of
Clonons (Bloom 2005).
Note: This pattern reflects
horizontal similarity.

Part of + Self-Similarity: At
each level, the shape or
structure of the whole is
repeated in the parts, i.e.,
the hierarchy is self-similar
at all scales.

Fractal.
Note: This pattern reflects
vertical similarity.

Part of + Connections or
Interactions among Parts

System composition
hierarchy

Control of Many by One Control hierarchy—e.g., a
command structure

Subtype or Sub-Class
Type or specialization
hierarchy; a type of
generalization

Instance of Category
Categorization (object-class;
model-metamodel…)
hierarchy; a type of
generalization

Network patterns are of two flavors. First, traditional
patterns are network topology types, such as bus
(common backbone), ring, star (central hub), tree, and
mesh (multiple routes) (ATIS 2008). Second, the
relatively young science of networks has been
investigating social and other complex patterns, such as
percolation, cascades, power law, scale-free, small
worlds, semantic networks, and neural networks
(Boccara 2004; Neumann et al. 2006).

Metapatterns

The metapatterns identified and defined in the table
below are from (Bloom 2005), (Volk and Bloom 2007),
and (Kappraff 1991). They describe a metapattern as
convergences exhibited in the similar structures of
evolved systems across widely separated scales (Volk
and Bloom 2007).

Table 2. Metapatterns. (SEBoK Original)

Name Brief
Definition Examples

Spheres

Shape of
maximum
volume,
minimum
surface,
containment

Cell, planet, dome, ecosystem,
community

Centers
Key
components of
system stability

Prototypes, purpose, causation;
Deoxyribonucleic acid (DNA), social
insect centers, political constitutions
and government, attractors

Tubes
Surface
transfer,
connection,
support

Networks, lattices, conduits, relations;
leaf veins, highways, chains of
command

Binaries
Plus

Minimal and
thus efficient
system

Contrast, duality, reflections, tensions,
complementary/symmetrical/reciprocal
relationships; two sexes, two-party
politics, bifurcating decision process

Clusters,
Clustering

Subset of webs,
distributed
systems of
parts with
mutual
attractions

Bird flocks, ungulate herds, children
playing, egalitarian social groups

Webs or
Networks

Parts in
relationships
within systems
(can be
centered or
clustered, using
clonons or
holons)

Subsystems of cells, organisms,
ecosystems, machines, society

Sheets
Transfer
surface for
matter, energy,
or information

Films; fish gills, solar collectors

Borders
and Pores

Protection,
openings for
controlled
exchange

Boundaries, containers, partitions, cell
membranes, national borders

Layers

Combination of
other patterns
that builds up
order,
structure, and
stabilization

Levels of scale, parts and wholes,
packing, proportions, tiling

Similarity
Figures of the
same shape but
different sizes

Similar triangles, infant-adult

Emergence

General
phenomenon
when a new
type of
functionality
derives from
binaries or
webs.

Creation (birth), life from molecules,
cognition from neurons

Holarchies

Levels of webs,
in which
successive
systems are
parts of larger
systems

Biological nesting from biomolecules
to ecosystems, human social nesting,
engineering designs, computer
software

Holons
Parts of
systems as
functionally
unique

Heart-lungs-liver (holons) of body

Clonons
Parts of
systems as
interchangeable

Skin cells (clonons) of the skin; bricks
in constructing a house

Arrows
Stability or
gradient-like
change over
time

Stages, sequence, orientation, stress,
growth, meanders, biological
homeostasis, growth, self-maintaining
social structures

Cycles
Recurrent
patterns in
systems over
time

Alternating repetition, vortex, spiral,
turbulence, helices, rotations; protein
degradation and synthesis, life cycles,
power cycles of electricity generating
plants, feedback cycles

Breaks

Relatively
sudden
changes in
system
behavior

Transformation, change, branching,
explosion, cracking, translations; cell
division, insect metamorphosis,
coming-of-age ceremonies, political
elections, bifurcation points

Triggers
Initiating agents
of breaks, both
internal and
external

Sperm entering egg or precipitating
events of war

Gradients
Continuum of
variation
between binary
poles

Chemical waves in cell development,
human quantitative and qualitative
values

Systems Engineering Patterns

Some work has been done on various aspects of
explicitly applying patterns to SE. A review article of
much of this work was written by Bagnulo and Addison
(2010), covering patterns in general, capability
engineering, pattern languages, pattern modeling, and
other SE-related pattern topics. Cloutier (2005)
discussed applying patterns to SE, based on architecture
and software design patterns. Haskins (2005), and
Simpson and Simpson (2006) discussed the use of SE
pattern languages to enhance the adoption and use of SE
patterns. Simpsons identified three high-level, global
patterns that can be used as a means of organizing
systems patterns:

Anything can be described as a system.
The problem system is always separate from the
solution system.
Three systems, at a minimum, are always involved in
any system activity: the environmental system, the
product system, and the process system.

Haskins (2008) also proposed the use of patterns as a
way to facilitate the extension of SE from traditional
technological systems to address social and socio-
technical systems. Some patterns have been applied and
identified in this extended arena, described as patterns
of success by Rebovich and DeRosa (2012). Stevens
(2010) also discussed patterns in the engineering of
large-scale, complex “mega-systems.”

A common SE activity in which patterns are applied is in
system design, especially in defining one or more
solution options for a system-of-interest. See
Synthesizing Possible Solutions for a discussion. The
more specific topic of using patterns (and antipatterns,
as described below) to understand and exploit
emergence is discussed in the Emergence topic.

Patterns of Failure: Antipatterns

System Archetypes

http://sandbox.sebokwiki.org/Synthesizing_Possible_Solutions
http://sandbox.sebokwiki.org/Emergence

The system dynamics community has developed a
collection of what are called system archetypes. The
concept was originated by Forrester (1969), while Senge
(1990) appears to have introduced the system archetype
term. According to Braun (2002), the archetypes
describe common patterns of behavior that help answer
the question, “Why do we keep seeing the same
problems recur over time?” They focus on behavior in
organizations and other complex social systems that are
repeatedly but unsuccessfully used to solve recurring
problems. This is why they are grouped here under
antipatterns, even though the system dynamics
community does not refer to the archetypes as
antipatterns. The table below summarizes the
archetypes. There is not a fixed set, or even fixed names
for a given archetype. The table shows alternative names
for some archetypes.

Table 3. System Archetypes. (SEBoK Original)
Name (Alternates) Description Reference**

Counterintuitive
Behavior

Forrester identified three
“especially dangerous”
counter-intuitive
behaviors of social
systems, which
correspond respectively
to three of the
archetypes discussed
below: (1) Low-Leverage
Policies: Ineffective
Actions; (2) High
Leverage Policies: Often
Wrongly Applied; and (3)
Long-Term vs. Short-
Term Trade-offs

F1, F2

Low-Leverage
Policies:
Ineffective Actions
(Policy
Resistance)

Most intuitive policy
changes in a complex
system have very little
leverage to create
change; this is because
the change causes
reactions in other parts of
the system that
counteract the new
policy.

F1, F3, M

High Leverage
Policies: Often
Wrongly Applied
(High Leverage,
Wrong Direction)

A system problem is
often correctable with a
small change, but this
high-leverage solution is
typically counter-intuitive
in two ways: (1) the
leverage point is difficult
to find because it is
usually far removed in
time and place from
where the problem
appears, and (2) if the
leverage point is
identified, the change is
typically made in the
wrong direction, thereby
intensifying the problem.

F1, F3, M

Long-Term vs.
Short-Term Trade-
offs (Fixes that
Fail, Shifting the
Burden,
Addiction)

Short-term solutions are
intuitive, but in complex
systems there is nearly
always a conflict or
tradeoff between short-
term and long-term
goals. Thus, a quick fix
produces immediate
positive results, but its
unforeseen and
unintended long-term
consequences worsen the
problem. Furthermore, a
repeated quick fix
approach makes it harder
to change to a more
fundamental solution
approach later.

F1, F3, M, S,
B

Drift to Low
Performance
(Eroding Goals,
Collapse of Goals)

There is a strong
tendency for complex
system goals to drift
downward. A gap
between current state
and goal state creates
pressure to lower the
goal rather than taking
difficult corrective action
to reach the goal. Over
time the continually
lowered goals lead to
crisis and possible
collapse of the system.

F1, F3, M, B

Official Addiction –
Shifting the
Burden to the
Intervener

The ability of a system to
maintain itself
deteriorates when an
intervener provides help
and the system then
becomes dependent on
the intervener.

M, S

Limits to Growth
(a.k.a. Limits to
Success)

A reinforcing process of
accelerating growth (or
expansion) will encounter
a balancing process as
the limit of that system is
approached and
continuing efforts will
produce diminishing
returns as one
approaches the limits.

S, B

Balancing Process
with Delay

Delay in the response of
a system to corrective
action causes the
correcting agent to either
over-correct or to give up
due to no visible
progress.

S

Escalation

Two systems compete for
superiority, with each
escalating its competitive
actions to get ahead, to
the point that both
systems are harmed.

B

Success to the
Successful

Growth leads to decline
elsewhere. When two
equally capable systems
compete for a limited
resource, if one system
receives more resources,
it is more likely to be
successful, which results
in its receiving even more
resources, in a
reinforcing loop.

S, B

Tragedy of the
Commons

A shared resource is
depleted as each system
abuses it for individual
gain, ultimately hurting
all who share it.

H, S, B

Growth and
Underinvestment

In a situation where
capacity investments can
overcome limits, if such
investments are not
made, then growth stalls,
which then rationalizes
further underinvestment.

S, B

Accidental
Adversaries

Two systems destroy
their relationship through
escalating retaliations for
perceived injuries.

B

Attractiveness
Principle

In situations where a
system faces multiple
limiting or impeding
factors, the tendency is
to consider each factor
separately to select
which one to address
first, rather than a
strategy based on the
interdependencies
among the factors.

B

** B—(Braun 2002) ; F1—(Forrester 1969) ;
F2—(Forrester 1995); F3—(Forrester 2009); H—(Hardin
1968); M—(Meadows 1982); S—(Senge 1990).

Relations among system archetypes were defined by
Goodman and Kleiner (1993/1994) and republished in
Senge et al. (1994).

Software and Other Antipatterns

Antipatterns have been identified and collected in the
software community in areas that include: architecture,
development, project management, user interface,
organization, analysis, software design, programming,
methodology, and configuration management
(AntiPatterns Catalog 2012, Wikibooks 2012). A brief
statement of three of them follows; the first two are
organization and the third is software design.

Escalation of commitment - Failing to revoke a
decision when it proves wrong.
Moral hazard - Insulating a decision-maker from the
consequences of his or her decision.
Big ball of mud - A system with no recognizable
structure.

A link between the software community and the system
archetypes is represented in a project at the Software
Engineering Institute (SEI) (2012), which explores the
system archetypes in the context of identifying recurring
software acquisition problems as “acquisition
archetypes.” They refer to both types of archetypes as
patterns of failure.

Another set of antipatterns in the general systems arena

has been compiled by Troncale (2010; 2011) in his
systems pathologies project. Sample pathology types or
patterns include:

Cyberpathologies - Systems-level malfunctions in
feedback architectures.
Nexopathologies - Systems-level malfunctions in
network architectures or dynamics.
Heteropathologies - Systems-level malfunctions in
hierarchical, modular structure & dynamics.

Some treatments of antipatterns, including Senge (1990)
and SEI (2012), also provide some advice on dealing
with or preventing the antipattern.

Patterns and Maturity

Patterns may be used as an indicator of the maturity of a
domain of inquiry, such as systems science or systems
engineering. In a mature and relatively stable domain,
the problems and solutions are generally understood and
their similarities are captured in a variety of what are
here called patterns. A couple of observations can be
made in this regard on the maturity of systems science
in support of systems engineering.

In the arenas of physical systems and technical systems,
systems science is relatively mature; many system
patterns of both natural physical systems and
engineered technical systems are reasonably well
defined and understood.

In the arena of more complex systems, including social
systems, systems science is somewhat less mature.
Solution patterns in that arena are more challenging. A
pessimistic view of the possibility of science developing
solutions to social problems was expressed by Rittel and
Webber (1973) in their classic paper on wicked
problems: “The search for scientific bases for
confronting problems of social policy is bound to fail,
because . . . they are ‘wicked’ problems, whereas science
has developed to deal with ‘tame’ problems.” A more
optimistic stance toward social problems has
characterized the system dynamics community. They
have been pointing out for over 40 years the problems
with conventional solutions to social problems, in the
form of the system archetypes and associated feedback
loop models. That was an important first step.
Nevertheless, they have had difficulty achieving the
second step; producing social patterns that can be

applied to solve those problems. The antipatterns
characterize problems, but the patterns for solving those
problems are elusive.

Despite the difficulties, however, social systems do
exhibit regularities, and social problems are often solved
to some degree. The social sciences and complex
systems community have limited sets of patterns, such
as common types of organization structures, common
macro-economic models, and even patterns of
insurgency and counter-insurgency. The challenge for
systems science is to capture those regularities and the
salient features of those solutions more broadly and
make them explicit and available in the form of mature
patterns. Then perhaps social problems can be solved on
a more regular basis. As systems engineering expands
its scope from the traditional emphasis on technical
aspects of systems to the interplay of the social and
technical aspects of socio-technical systems, such
progress in systems science is becoming even more
important to the practice of systems engineering.

References

Works Cited

Alexander, C. 1979. The Timeless Way of Building. New
York, NY, USA: Oxford University Press.

Alexander, C., S. Ishikawa, M. Silverstein, M. Jacobson,
I. Fiksdahl-King, and S. Angel. 1977. A Pattern
Language: Towns – Buildings – Construction. New York,
NY, USA: Oxford University Press.

ATIS. 2008. ATIS Telecom Glossary 2007. Washington,
D.C., USA: Alliance for Telecommunications Industry
S o l u t i o n s . A v a i l a b l e a t : A T I S
http://www.atis.org/glossary/definition.aspx?id=3516.
Accessed December 3, 2014.

Bagnulo, A. and T. Addison. 2010. State of the Art Report
on Patterns in Systems Engineering and Capability
Engineering. Contract Report 2010-012 by CGI Group
for Defence R&D Canada – Valcartier. March 2010.

Bloom, J. 2005. "The application of chaos, complexity,
and emergent (meta)patterns to research in teacher
education." Proceedings of the 2004 Complexity Science
and Educational Research Conference (pp. 155-191),
Chaffey’s Locks, Canada, Sep 30–Oct 3 2004. Available
at: http://www.complexityandeducation.ca.

http://sandbox.sebokwiki.org/The_Timeless_Way_of_Building
http://www.atis.org/glossary/definition.aspx?id=3516
http://sandbox.sebokwiki.org/The_application_of_chaos,_complexity,_and_emergent_(meta)patterns_to_research_in_teacher_education
http://sandbox.sebokwiki.org/The_application_of_chaos,_complexity,_and_emergent_(meta)patterns_to_research_in_teacher_education
http://sandbox.sebokwiki.org/The_application_of_chaos,_complexity,_and_emergent_(meta)patterns_to_research_in_teacher_education
http://www.complexityandeducation.ca

Boccara, N. 2004. Modeling Complex Systems. New
York, NY, USA: Springer-Verlag.

Braun, T. 2002. "The System Archetypes." Available at:
http://www.albany.edu/faculty/gpr/PAD724/724WebArticl
es/sys_archetypes.pdf

Brown, W., R. Malveau, H. McCormick, and T. Mowbray.
1998. AntiPatterns: Refactoring Software, Architectures,
and Projects in Crisis. Hoboken, NJ, USA: John Wiley &
Sons.

Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad,
and M. Stal. 1996. Pattern-Oriented Software
Architecture: A System of Patterns. Chichester, U.K.:
John Wiley.

Cloutier, R. 2005. "Toward the application of patterns to
systems engineering." Proceedings of the Conference on
Systems Engineering Research (CSER) 2005, Hoboken,
NJ, USA, March 23-25, 2005.

Forrester, J. 1969. Urban Dynamics. Waltham, MA, USA:
Pegasus Communications.

Forrester, J. 1995. "Counterintuitive behavior of social
systems," Technology Review, vol. 73, no. 3, Jan. 1971,
pp. 52-68.

Forrester, J. 2009. Learning through System Dynamics
as Preparation for the 21st Century.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1995.
Design Patterns: Elements of Reusable Object-Oriented
Software. Reading, MA, USA: Addison-Wesley.

Goodman, G. and A. Kleiner. 1993/1994. “Using the
archetype family tree as a diagnostic tool,” The Systems
Thinker, December 1993/January 1994.

Gregory, S. 1966. "Design and the design method," in S.
Gregory, Ed., The Design Method. London, England:
Butterworth.

Hardin, G. 1968. "The Tragedy of the Commons,"
Science, vol. 162, 13 December 1968, pp. 1243-1248.
DOI: 10.1126/science.162.3859.1243.

Haskins, C. 2005. "Application of patterns and pattern
languages to systems engineering." Proceedings of the
15th Annual INCOSE International Symposium,
Rochester, NY, USA, July 10-13, 2005.

Haskins, C. 2008. "Using patterns to transition systems

http://www.albany.edu/faculty/gpr/PAD724/724WebArticles/sys_archetypes.pdf
http://www.albany.edu/faculty/gpr/PAD724/724WebArticles/sys_archetypes.pdf

engineering from a technological to social context,"
Systems Engineering, vol. 11, no. 2, May 2008, pp.
147-155.

Hybertson, D. 2009. Model-Oriented Systems
Engineering Science: A Unifying Framework for
Traditional and Complex Systems. Boca Raton, FL, USA:
Auerbach/CRC Press.

Kappraff, J. 1991. Connections: The Geometric Bridge
between Art and Science. New York, NY, USA: McGraw-
Hill.

Koenig, A. 1995. "Patterns and antipatterns," Journal of
Object-Oriented Programming, vol. 8, no. 1, March/April
1995, pp. 46–48.

Koestler, A. 1967. The Ghost in the Machine. New York,
NY, USA: Macmillan.

Lehmann, M. and L. Belady. 1985. Program Evolution.
London, England: Academic Press.

Meadows, D. 1982. “Whole Earth Models and Systems,”
The Co-Evolution Quarterly, Summer 1982, pp. 98-108.

Odum, H. 1994. Ecological and General Systems: An
Introduction to Systems Ecology (Revised Edition).
Boulder, CO, USA: University Press of Colorado.

Rebovich, G. and J. DeRosa. 2012. "Patterns of success in
systems engineering of IT-intensive government
systems," Procedia Computer Science, vol. 8, 2012, pp.
303 – 308.

Rittel, H. and M. Webber. 1973. "Dilemmas in a general
theory of planning," Policy Sciences, vol. 4, pp. 155–169.

Schindel, W. 2005. "Pattern-based systems engineering:
An extension of model-based systems engineering,"
INCOSE TIES tutorial presented at 2005 INCOSE
Symposium, Rochester, NY, USA, 10-15 July 2005.

Schindel, W. and V. Smith. 2002. Results of Applying a
Families-of-Systems Approach to Systems Engineering of
Product Line Families. Technical Report 2002-01-3086.
SAE International.

SEI 2012. Patterns of Failure: System Archetypes.
A v a i l a b l e a t : S E I
http://www.sei.cmu.edu/acquisition/research/pofsa.cfm.
Accessed December 3, 2014.

Senge, P. 1990. The Fifth Discipline: Discipline: The Art

http://sandbox.sebokwiki.org/Model-Oriented_Systems_Engineering_Science
http://sandbox.sebokwiki.org/Model-Oriented_Systems_Engineering_Science
http://www.sei.cmu.edu/acquisition/research/pofsa.cfm

and Practice of the Learning Organization. New York,
NY, USA: Currency Doubleday.

Senge, P., A. Kleiner, C. Roberts and R. Ross. 1994. The
Fifth Discipline Fieldbook: Strategies and Tools for
Building a Learning Organization. New York, NY, USA:
Currency Doubleday.

Shaw, M. and D. Garlan. 1996. Software Architecture:
Perspectives on an Emerging Discipline. Upper Saddle
River, NJ, USA: Prentice Hall.

Simpson, J. and M. Simpson. 2006. "Foundational
systems engineering patterns for a SE pattern
language," Proceedings of the 16th Annual INCOSE
Symposium, Orlando, FL, USA, July 2006.

Stevens, R. 2011. Engineering Mega-Systems: The
Challenge of Systems Engineering in the Information
Age. Boca Raton, FL, USA: Auerbach/Taylor & Francis.

Troncale, L. 2010. "Would a rigorous knowledge base in
“systems pathology” add to the S.E. portfolio?"
Presented at 2010 LA Mini-Conference, Loyola
Marymount University, Los Angeles, CA, 16 October
2010.

Troncale, L. 2011. “Would a rigorous knowledge base in
systems pathology add significantly to the SE portfolio?"
Proceedings of the Conference on Systems Engineering
Research (CSER), Redondo Beach, CA, April 14-16.

Volk, T., and J.W. Bloom. 2007. "The use of metapatterns
for research into complex systems of teaching, learning,
and schooling. Part I: Metapatterns in nature and
culture," Complicity: An International Journal of
Complexity and Education, vol. 4, no. 1, pp. 25—43.

Wikibooks. 2012a. "AntiPatterns." Available at:
http://en.wikibooks.org/wiki/Introduction_to_Software_E
ngineering/Architecture/Anti-Patterns.

Wikipedia. 2012b. "Software Design Pattern." Available
at: http://en.wikipedia.org/wiki/Software_design_pattern.

Primary References

Alexander, C. 1979. The Timeless Way of Building. New
York, NY, USA: Oxford University Press.

Bertalanffy, L. von. 1968. General System Theory:
Foundations, Development, Applications. Revised ed.
New York, NY, USA: Braziller.

http://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Architecture/Anti-Patterns
http://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Architecture/Anti-Patterns
http://en.wikipedia.org/wiki/Software_design_pattern
http://sandbox.sebokwiki.org/The_Timeless_Way_of_Building
http://sandbox.sebokwiki.org/General_System_Theory:_Foundations,_Development,_Applications
http://sandbox.sebokwiki.org/General_System_Theory:_Foundations,_Development,_Applications

Bloom, J. 2005. "The application of chaos, complexity,
and emergent (meta)patterns to research in teacher
education." Proceedings of the 2004 Complexity Science
and Educational Research Conference (pp. 155-191),
Chaffey’s Locks, Canada, Sep 30–Oct 3, 2004. Available
at: http://www.complexityandeducation.ca.

Hybertson, D. 2009. Model-Oriented Systems
Engineering Science: A Unifying Framework for
Traditional and Complex Systems. Boca Raton, FL, USA:
Auerbach/CRC Press.

Additional References

Principia Cybernetica. 1996. Cybernetics and Systems
T h e o r y . A v a i l a b l e a t :
http://pespmc1.vub.ac.be/CYBSYSTH.html. Accessed 21
April 2013.

Erl, T. 2009. SOA: Design Patterns. Upper Saddle River,
NJ, USA: Prentice Hall.

Erl, T. 2008. SOA: Principles of Service Design. Upper
Saddle River, NJ, USA: Prentice Hall.

Francois, F., Ed.. 2004. International Encyclopedia of
Systems and Cybernetics, 2nd ed. Munich, Germany: K.
G. Saur Verlag.

Meyers, R. Ed. 2009. Encyclopedia of Complexity and
Systems Science. New York, NY, USA: Springer.

Midgley, G. Ed. 2003. Systems Thinking. Thousand Oaks,
CA, USA: Sage Publications Ltd.

Principia Cybernetica Web. 2013. "Web Dictionary of
Cyberne t i c s and Sys tems . " Ava i l ab l e a t :
http://pespmc1.vub.ac.be/ASC/indexASC.html. Accessed
21 April 2013.

Previous Article | Parent Article | Next Article >
SEBoK v. 2.10, released 06 May 2024

Retrieved from
"https://sandbox.sebokwiki.org/index.php?title=Patterns_of_Systems_
Thinking&oldid=71200"

This page was last edited on 2 May 2024, at 22:02.

http://sandbox.sebokwiki.org/The_application_of_chaos,_complexity,_and_emergent_(meta)patterns_to_research_in_teacher_education
http://sandbox.sebokwiki.org/The_application_of_chaos,_complexity,_and_emergent_(meta)patterns_to_research_in_teacher_education
http://sandbox.sebokwiki.org/The_application_of_chaos,_complexity,_and_emergent_(meta)patterns_to_research_in_teacher_education
http://www.complexityandeducation.ca
http://sandbox.sebokwiki.org/Model-Oriented_Systems_Engineering_Science
http://sandbox.sebokwiki.org/Model-Oriented_Systems_Engineering_Science
http://pespmc1.vub.ac.be/CYBSYSTH.html
http://pespmc1.vub.ac.be/ASC/indexASC.html
http://sandbox.sebokwiki.org/Principles_of_Systems_Thinking
http://sandbox.sebokwiki.org/Systems_Thinking
http://sandbox.sebokwiki.org/Representing_Systems_with_Models
https://sandbox.sebokwiki.org/index.php?title=Patterns_of_Systems_Thinking&oldid=71200
https://sandbox.sebokwiki.org/index.php?title=Patterns_of_Systems_Thinking&oldid=71200

