
Software Engineering in
the Systems Engineering
Life Cycle
Software Engineering in the Systems Engineering Life Cycle

The printable version is no longer supported and may
have rendering errors. Please update your browser
bookmarks and please use the default browser print
function instead.

Lead Authors: Tom Hi lburn, Dick Fair ley ,
Contributing Author: Alice Squires

This article describes how software engineering (SwE)
life cycle processes integrate with the SE life cycle. A
joint workshop organized by INCOSE, the Systems
Engineering Research Center and the IEEE Computer
Society was held to consider this relationship (Pyster et
al. 2015). This workshop concluded that:

So f tware i s f undamenta l t o the
performance, features, and value of most
modern engineering systems. It is not
merely part of the system, but often shapes
the system architecture; drives much of its
complexity and emergent behavior; strains
its verification; and drives much of the cost
and schedule of its development. Given
how significant an impact software has on
system development and given how
complex modern systems are, one would
expect the relationship between the
disciplines of systems engineering (SE)
and software engineering (SWE) to be well
defined. However, the relationship is, in
fact, not well understood or articulated.

In this article we give some of the basic relationships
between SwE and SE and discuss how these can be
related to some of the SEBoK knowledge areas.

http://sandbox.sebokwiki.org/Software_Engineering_in_the_Systems_Engineering_Life_Cycle

Contents
Systems Engineering and Software Engineering Life
Cycles
Systems Engineering and Software Engineering
Standards
Systems Engineering and Software Engineering Life
Cycle Relationships
Software and Systems Challenges
References

Works Cited
Primary References
Additional References

Systems Engineering and
Software Engineering Life Cycles
The Guide to the Software Engineering Body of
Knowledge (SWEBoK) (Bourque and Fairley, 2014)
describes the life cycle of a software product as:

analysis and design,
construction,
testing,
operation,
maintenance, and eventually
retirement or replacement.

This life cycle is common to most other mature
engineering disciplines.

In Part 3 of the SEBoK, SE and Management, there is a
discussion of SE life cycle models and life cycle
processes. A Generic Life Cycle Model is described and
reproduced in Fig. 1 below. This is used to describe
necessary stages in the life cycle of a typical engineered
system.

Figure 1. A Generic Life Cycle Model. (SEBoK Original)

http://sandbox.sebokwiki.org/Systems_Engineering_and_Management
http://sandbox.sebokwiki.org/Generic_Life_Cycle_Model
http://sandbox.sebokwiki.org/File:Fig_1_A_generic_life_cycle_KF.png

Part 3 defines a collection of generic SE life cycle
processes which define the activities and information
needed across the SE life cycle. These processes include
activities which contribute across the whole life cycle,
with peaks of focused activity in certain stages (see
Applying Life Cycle Processes for details).

The following sections provide a brief discussion of how
SwE life cycle processes fit into SE life cycle process
models. In practice, the details of this relationship are a
key part of how a system life cycle is planned and
delivered. The relationship will be shaped by the
operating domain practice and solution type. Some
examples of this are provided in the Implementation
Examples.

Systems Engineering and
Software Engineering Standards
The Systems Engineering life cycle processes described
in Part 3, SE and Management, are largely based on
those defined in the ISO/IEC/IEEE SE Life Cycle
Processes 15288 Standard (2015).

The SWEBoK references the equivalent ISO/IEC/IEEE
Software Engineering Life Cycle Processes 12207
Standard (2008), which defines a very similar set of
processes for software systems. Figure 2 shows the
relationship between the Enabling, Acquisition, Project
and Technical Systems and Software processes in both
15288 and 12207 and the software specific processes of
12207. This alignment is from the last updates of both
12207 and 15288 in 2008. The SE processes have been
further updated in 15288:2015, see Systems Engineering
and Management for details. This change has not yet
been applied to 12207. An update of 12207 was released
in 2017, in which the alignment to 15288 was reviewed.
See Alignment and Comparison of the Standards for
more discussion of the relationships between the
standards.

http://sandbox.sebokwiki.org/Applying_Life_Cycle_Processes
http://sandbox.sebokwiki.org/Systems_Engineering_Implementation_Examples
http://sandbox.sebokwiki.org/Systems_Engineering_Implementation_Examples
http://sandbox.sebokwiki.org/Systems_Engineering_and_Management
http://sandbox.sebokwiki.org/Systems_Engineering_and_Management
http://sandbox.sebokwiki.org/Systems_Engineering_and_Management
http://sandbox.sebokwiki.org/Alignment_and_Comparison_of_the_Standards

Figure 2. Aligned Process Models for ISO/IEC/IEEE 15288 &
12207: 2008 (Adapted from Roedler 2011). Reprinted with

permission of Garry Roedler. All other rights are reserved by the
copyright owner.

Systems Engineering and
Software Engineering Life Cycle
Relationships
Pyster et al. (2015) define two technical dimensions of
engineered systems and of the engineering disciplines
associated with them. The vertical dimensions of a
system are those that modularize around technically
focused engineering concerns involving specific
elements of the system; the horizontal dimensions of a
system involve cross-cutting concerns at the systems
level. Examples of vertical concerns include quality
attributes and performance effectiveness; and cost,
schedule and risk of physical, organizational or human
system elements associated with a particular technology
domain. Examples of horizontal concerns include
addressing evolving customer preferences that drive
systems-level quality attributes, trade-off and
optimization; resolving system architecture,
decomposition and integration issues; implementing
system development processes; and balancing system
economics, cost, risk and schedule.

In complex systems projects, SE has a horizontal role
while traditional engineering disciplines such as
electrical, mechanical, and chemical engineering have
vertical roles. To the extent that it is responsible for all
aspects of the successful delivery of software related
elements, SwE can be considered as one of the vertical

http://sandbox.sebokwiki.org/File:Aligned-Process-Models.PNG

disciplines. All of these traditional vertical disciplines
will have some input to the horizontal dimension.
However, the nature of software and its role in many
complex systems makes SwE a critical discipline for
many horizontal concerns. This is discussed further
below.

The ISO/IEC/IEEE 12207 software engineering standard
(2008) considers two situations:

The life cycle of software products, containing minimal
physical hardware, should use software specific
processes and a simple life cycle
The life cycle of systems with a significant software
content (sometimes called software intensive
systems) should integrate the software processes into
the SE life cycle

The second of these situations is the one relevant to the
practice of SE and requires a significant horizontal
contribution from SwE.

The relationship central to this is the way SwE
Implementation Processes (see Fig 2) are used in the
SE life cycle to support the implementation of software
intensive system elements. This simple relationship must
be seen in the context of the concurrency, iteration and
recursion relationship between SE life cycle processes
described in Applying Life Cycle Processes. This means
that, in general, software requirements and architecture
processes will be applied alongside system requirements
and architecture processes; while software integration
and test processes are applied alongside system
integration, verification and validation processes. These
interrelationships help with vertical software concerns,
ensuring detailed software design and construction
issues are considered at the system level. They also help
with horizontal concerns, ensuring whole system issues
are considered and are influenced by an understanding
of software. See the Nature of Software for more details.

The ways these related processes work together will
depend on the systems approach to solution synthesis
used and how this influences the life cycle. If a top down
approach is used, problem needs and system
architecture will drive software implementation and
realization. If a bottom up approach is used, the
architecture of existing software will strongly influence
both the system solution and the problem which can be
considered. In Applying Life Cycle Processes, a "middle-
out" approach is described which combines these two

http://sandbox.sebokwiki.org/Applying_Life_Cycle_Processes
http://sandbox.sebokwiki.org/The_Nature_of_Software
http://sandbox.sebokwiki.org/Applying_Life_Cycle_Processes

ideas and is the most common way to develop systems.
This approach needs a two-way relationship between SE
and SwE technical processes.

The SW Support Processes may also play these
vertical and horizontal roles. Part 3 contains knowledge
areas on both System Deployment and Use which
includes operation, maintenance and logistics; and
Systems Engineering Management which covers the
project processes shown in Figure 2. SwE support
processes focus on the successful vertical deployment
and use of software system elements and the
management needed to achieve this. They also support
their equivalent horizontal SE processes in contributing
to the success of the whole system life cycle. The
Software Reuse Processes have a particularly
important role to play in deployment and use and
Product and Service Life Management processes. The
latter considers Service Life Extension; Capability
Updates, Upgrades, and Modernization; and system
Disposal and Retirement. All of these horizontal software
engineering activities rely on the associated SE activities
having a sufficient understanding of the strengths and
limitations of software and SwE (see Key Points a
Systems Engineer Needs to Know about Software
Engineering).

The Life Cycle Models knowledge area also defines how
Vee and Incremental life cycle models provide a
framework to tailor the generic life cycle and process
definitions to different types of system development.
Both models, with some modification, apply equally to
the development of products and services containing
software. Thus, the simple relationships between SE and
SwE processes will form the basis for tailoring to suit
project needs within a selected life cycle model.

Software and Systems Challenges
Pyster et al. (2015) define three classes of software
intensive systems distinguished by the primary sources
of novelty, functionality, complexity and risk in their
conception, development, operation and evolution. These
are briefly described below:

Physical Systems operate on and generate matter
or energy. While they often utilize computation and
software technologies as components, those
components are not dominant in the horizontal
dimension of engineering. Rather, in such systems,
they are defined as discrete system elements and

http://sandbox.sebokwiki.org/System_Deployment_and_Use
http://sandbox.sebokwiki.org/Systems_Engineering_Management
http://sandbox.sebokwiki.org/Product_and_Service_Life_Management
http://sandbox.sebokwiki.org/Service_Life_Extension
http://sandbox.sebokwiki.org/Capability_Updates,_Upgrades,_and_Modernization
http://sandbox.sebokwiki.org/Capability_Updates,_Upgrades,_and_Modernization
http://sandbox.sebokwiki.org/Disposal_and_Retirement
http://sandbox.sebokwiki.org/Key_Points_a_Systems_Engineer_Needs_to_Know_about_Software_Engineering
http://sandbox.sebokwiki.org/Key_Points_a_Systems_Engineer_Needs_to_Know_about_Software_Engineering
http://sandbox.sebokwiki.org/Key_Points_a_Systems_Engineer_Needs_to_Know_about_Software_Engineering
http://sandbox.sebokwiki.org/Life_Cycle_Models
http://sandbox.sebokwiki.org/Vee_Life_Cycle_Model
http://sandbox.sebokwiki.org/Incremental_Life_Cycle_Model

viewed and handled as vertical concerns.
Computational Systems include those in which
computational behavior and, ipso facto, software are
dominant at the systems level. The primary purpose
of these systems is to operate on and produce data
and information. While these systems always include
physical and human elements, these are not the
predominant challenges in system development,
operation and evolution.
Cyber-Physical Systems are a complex combination
of computational and physical dimensions. Such
systems are innovative, functionally complex and
risky in both their cyber and physical dimensions.
They pose major horizontal engineering challenges
across the board. In cyber-physical systems, cyber
and physical elements collaborate in complex ways to
deliver expected system behavior.

Some of the challenges of physical and computational
systems are well known and can be seen in many SE and
SwE case studies. For example, physical system life
cycles often make key decisions about the system
architecture or hardware implementation which limit the
subsequent development of software architecture and
designs. This can lead to software which is inefficient
and difficult or expensive to change. Problems which
arise later in the life of such systems may be dealt with
by changing software or human elements. This is
sometimes done in a way which does not fully consider
SwE design and testing practices. Similarly,
computational systems may be dominated by the
software architecture, without sufficient care taken to
consider the best solutions for enabling hardware or
people. In particular, operator interfaces, training and
support may not be considered leading to the need for
expensive organizational fixes once they are in use.
Many computational systems in the past have been
developed without a clear view of the user need they
contribute to, or the other systems they must work with
to do so. These and other related issues point to a need
for system and software engineers with a better
understanding of each other's disciplines. Pyster et al.
(2015) consider how SE and SwE education might be
better integrated to help achieve this aim.

Examples of cyber-physical systems increasingly abound
– smart automobiles, power grids, robotic manufacturing
systems, defense and international security systems,
supply-chain systems, the so-called internet of things,
etc. In these systems there is no clear distinction

between software elements and the whole system
solution. The use of software in these systems is central
to the physical outcome and software is often the
integrating element which brings physical elements and
people together. These ideas are closely aligned with the
Service System Engineering approach described in Part
4.

SEBoK Part 3 includes a Business and Mission Analysis
process which is based on the equivalent process in the
updated ISO/IEC/IEEE 15288 (2015). This process
enables SE to be involved in the selection and bounding
of the problem situation which forms the starting point
for an engineered system life cycle. For cyber physical
systems, an understanding of the nature of software is
needed in the formulation of the problem, since this is
often fundamentally driven by the use of software to
create complex adaptive solution concepts. This close
coupling of software, physical and human system
elements across the system of interest continues
throughout the system life cycle making it necessary to
consider all three in most horizontal system level
decisions.

The life cycle of cyber physical systems cannot be easily
partitioned into SE and SwE achieving their own
outcomes but working together on horizontal system
issues. It will require a much more closely integrated
approach, requiring systems and software engineers
with a complementary set of competencies, and changes
how the two disciplines are seen in both team and
organizational structures. See Enabling Systems
Engineering.

References

Works Cited

Bourque, P. and R.E. Fairley (eds.). 2014. Guide to the
Software Engineering Body of Knowledge (SWEBOK).
Los Alamitos, CA, USA: IEEE Computer Society.
Available at: http://www.swebok.org.

ISO/IEC/IEEE. 2015. Systems and Software Engineering
-- System Life Cycle Processes. Geneva, Switzerland:
International Organisation for Standardisation /
International Electrotechnical Commissions / Institute of
Electrical and Electronics Engineers. ISO/IEC/IEEE
15288:2015.

ISO/IECIEEE. 2008. Systems and Software Engineering

http://sandbox.sebokwiki.org/Business_or_Mission_Analysis
http://sandbox.sebokwiki.org/Enabling_Systems_Engineering
http://sandbox.sebokwiki.org/Enabling_Systems_Engineering
http://sandbox.sebokwiki.org/Guide_to_the_Software_Engineering_Body_of_Knowledge_(SWEBOK)
http://sandbox.sebokwiki.org/Guide_to_the_Software_Engineering_Body_of_Knowledge_(SWEBOK)
http://www.swebok.org
http://sandbox.sebokwiki.org/ISO/IEC/IEEE_15288
http://sandbox.sebokwiki.org/ISO/IEC/IEEE_15288

— Software Life Cycle Processes. Geneva, Switzerland:
International Organization for Standards (ISO)/Institute
of Electrical & Electronics Engineers (IEEE) Computer
Society, ISO//IECIEEE 12207:2008(E).

Pyster, A., Adcock, R., Ardis, M., Cloutier, R., Henry, D.,
Laird, L., Lawson, H. ‘Bud’., Pennotti, M., Sullivan, K.,
Wade J. 2015. “Exploring the relationship between
systems engineering and software engineering.” 13th
Conference on Systems Engineering Research (CSER).
In Procedia Computer Science, Volume 44, 2015, pp.
708-717.

Roedler, G. 2011. "Towards Integrated Systems and
Software Engineering Standards." National Defense
Industrial Association (NDIA) Conference, San Diego,
CA, USA.

Primary References

Pyster, A., Adcock, R., Ardis, M., Cloutier, R., Henry, D.,
Laird, L., Lawson, H. ‘Bud’., Pennotti, M., Sullivan, K.,
Wade J. 2015. Exploring the relationship between
systems engineering and software engineering. 13th
Conference on Systems Engineering Research (CSER).
In Procedia Computer Science, Volume 44, 2015, pp.
708-717.

Additional References

Roedler, G. 2010. An overview of ISO/IEC/IEE 15288,
system life cycle processes. Asian Pacific Council on
Systems Engineering (APCOSE) Conference.

< Previous Article | Parent Article | Next Article >
SEBoK v. 2.10, released 06 May 2024

Retrieved from
"https://sandbox.sebokwiki.org/index.php?title=Software_Engineerin
g_in_the_Systems_Engineering_Life_Cycle&oldid=71174"

This page was last edited on 2 May 2024, at 21:57.

http://sandbox.sebokwiki.org/Exploring_the_Relationship_between_Systems_Engineering_and_Software_Engineering
http://sandbox.sebokwiki.org/Exploring_the_Relationship_between_Systems_Engineering_and_Software_Engineering
http://sandbox.sebokwiki.org/Exploring_the_Relationship_between_Systems_Engineering_and_Software_Engineering
http://sandbox.sebokwiki.org/Exploring_the_Relationship_between_Systems_Engineering_and_Software_Engineering
http://sandbox.sebokwiki.org/An_Overview_of_ISO/IEC/IEEE_15288,_System_Life_Cycle_Processes
http://sandbox.sebokwiki.org/An_Overview_of_ISO/IEC/IEEE_15288,_System_Life_Cycle_Processes
http://sandbox.sebokwiki.org/Systems_Engineering_and_Software_Engineering
http://sandbox.sebokwiki.org/Systems_Engineering_and_Software_Engineering
http://sandbox.sebokwiki.org/The_Nature_of_Software
https://sandbox.sebokwiki.org/index.php?title=Software_Engineering_in_the_Systems_Engineering_Life_Cycle&oldid=71174
https://sandbox.sebokwiki.org/index.php?title=Software_Engineering_in_the_Systems_Engineering_Life_Cycle&oldid=71174

