
The Nature of Software
The Nature of Software

The printable version is no longer supported and may
have rendering errors. Please update your browser
bookmarks and please use the default browser print
function instead.

The nature of the software medium has many
consequences for systems engineering (SE) of software-
intensive systems. Fred Brooks has famously observed
that four properties of software, taken together,
differentiate it from other kinds of engineering artifacts
(Brooks 1995). These four properties are:

complexity,1.
conformity,2.
changeability,3.
invisibility.4.

Brooks states:

Software entities are more complex for
their size than perhaps any other human
construct because no two parts are alike
(at least above the statement level). If they
are, we make the two similar parts into a
subroutine — open or closed. In this
respect, software systems differ profoundly
from computers, buildings, or automobiles,
where repeated elements abound. (Brooks
1995, p 82)

Contents
Complexity
Conformity
Changeability
Invisibility
Uniqueness
References

http://sandbox.sebokwiki.org/The_Nature_of_Software

Works Cited
Primary References

Complexity
The complexity of software arises from the large number
of unique interacting parts in a software system. The
parts are unique because they are encapsulated as
functions, subroutines, or objects, and invoked as
needed rather than being replicated. Software parts
have several different kinds of interactions, including
serial and concurrent invocations, state transitions, data
couplings, and interfaces to databases and external
systems.

Depiction of a software entity often requires several
different design representations to portray the numerous
static structures, dynamic couplings, and modes of
interaction that exist in computer software. Complexity
within the parts and in the connections among parts
requires that changes undergo substantial design rigor
and regression testing. Software provides functionality
for components that are embedded, distributed and data
centric. Software can implement simple control loops as
well as complex algorithms and heuristics.

Complexity can hide defects that may not be discovered
easily, thus requiring significant additional and
unplanned rework.

Conformity
Software, unlike a physical product, has no underlying
natural principles which it must conform to, such as
Newton’s laws of motion. However, software must
conform to exacting specifications in the representation
of each of its parts, in the interfaces to other internal
parts, and in the connections to the environment in
which it operates. A missing semicolon or other syntactic
error can be detected by a compiler, but a defect in the
program logic or a timing error may be difficult to detect
until encountered during operation.

Unlike software, tolerance among the interfaces of
physical entities is the foundation of manufacturing and
assembly. No two physical parts that are joined together
have, or are required to have, exact matches. There are
no corresponding tolerances in the interfaces among
software entities or between software entities and their
environments. There are no interface specifications for

software stating that a parameter can be an integer plus
or minus 2%. Interfaces among software parts must
agree exactly in numbers, types of parameters and kinds
of couplings.

Lack of conformity can cause problems when an existing
software component cannot be reused as planned
because it does not conform to the needs of the product
under development. Lack of conformity might not be
discovered until late in a project, thus necessitating the
development and integration of an acceptable
component to replace the one that cannot be reused.
This requires an unplanned allocation of resources
(usually) and can delay project completion.

Changeability
Software coordinates the operation of physical
components and provides most of the functionality in
software-intensive systems. Because software is the most
malleable (easily changed) element in a software-
intensive system, it is the most frequently changed
element. This is particularly true during the late stages
of a development project and during system
sustainment. However, this does not mean that software
is easy to change. Complexity and the need for
conformity can make changing software an extremely
difficult task. Changing one part of a software system
often results in undesired side effects in other parts of
the system, requiring more changes before the software
can operate at maximum efficiency.

Invisibility
Software is said to be invisible because it has no physical
properties. While the effects of executing software on a
digital computer are observable, software itself cannot
be seen, tasted, smelled, touched, or heard. Software is
an intangible entity because our five human senses are
incapable of directly sensing it.

Work products such as requirements specifications,
design documents, source code and object code are
representations of software, but they are not the
software. At the most elemental level, software resides
in the magnetization and current flow in an enormous
number of electronic elements within a digital device.
Because software has no physical presence, software
engineers must use different representations at different
levels of abstraction in an attempt to visualize the
inherently invisible entity.

Uniqueness
One other point about the nature of software that Brooks
alludes to but does not explicitly call out is the
uniqueness of software. Software and software projects
are unique for the following reasons:

Software has no physical properties;
Software is the product of intellect-intensive
teamwork;
Productivity of software developers varies more widely
than the productivity of other engineering disciplines;
Estimation and planning for software projects is
characterized by a high degree of uncertainty, which
can be at best partially mitigated by best practices;
Risk management for software projects is
predominantly process-oriented;
Software alone is useless, as it is always a part of a
larger system; and
Software is the most frequently changed element of
software intensive systems.

References

Works Cited

Brooks, F. 1995. The Mythical Man-Month, Anniversary
Edition. Boston, MA, USA: Addison Wesley Longman Inc.

Fairley, R.E. 2009. Managing and Leading Software
Projects. Hoboken, New Jersey: John Wiley and Sons.

Primary References

Bourque, P. and R.E. Fairley (eds.). 2014. Guide to the
Software Engineering Body of Knowledge (SWEBOK).
Los Alamitos, CA, USA: IEEE Computer Society.
Available at: http://www.Swebok.org.

Brooks, F. 1995. The Mythical Man-Month, Anniversary
Edition. Boston, MA, USA: Addison Wesley Longman Inc.

Fairley, R.E. 2009. Managing and Leading Software
Projects. Hoboken, New Jersey: John Wiley and Sons.

http://sandbox.sebokwiki.org/The_Mythical_Man-Month
http://sandbox.sebokwiki.org/Managing_and_Leading_Software_Projects
http://sandbox.sebokwiki.org/Managing_and_Leading_Software_Projects
http://sandbox.sebokwiki.org/Guide_to_the_Software_Engineering_Body_of_Knowledge_(SWEBOK)
http://sandbox.sebokwiki.org/Guide_to_the_Software_Engineering_Body_of_Knowledge_(SWEBOK)
http://www.Swebok.org
http://sandbox.sebokwiki.org/The_Mythical_Man-Month
http://sandbox.sebokwiki.org/Managing_and_Leading_Software_Projects
http://sandbox.sebokwiki.org/Managing_and_Leading_Software_Projects

< Previous Article | Parent Article | Next Article >
SEBoK v. 2.10, released 06 May 2024

Retrieved from
"https://sandbox.sebokwiki.org/index.php?title=The_Nature_of_Softw
are&oldid=71749"

This page was last edited on 2 May 2024, at 23:04.

http://sandbox.sebokwiki.org/Software_Engineering_in_the_Systems_Engineering_Life_Cycle
http://sandbox.sebokwiki.org/Systems_Engineering_and_Software_Engineering
http://sandbox.sebokwiki.org/An_Overview_of_the_SWEBOK_Guide
https://sandbox.sebokwiki.org/index.php?title=The_Nature_of_Software&oldid=71749
https://sandbox.sebokwiki.org/index.php?title=The_Nature_of_Software&oldid=71749

