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Many systems are being considered in which artificial
intelligence (AI) will be a key element. Failure of an AI
element can lead to system failure (Dreossi et al 2017),
hence the need for AI verification and validation (V&V).
The element(s) containing AI capabilities is treated as a
subsystem and V&V is conducted on that subsystem and
its interfaces with other elements of the system under
study,  just  as  V&V  would  be  conducted  on  other
subsystems. That is, the high-level definitions of V&V do
not  change  for  systems  containing  one  or  more  AI
elements.

However,  AI  V&V challenges  require  approaches  and
solutions  beyond those for  conventional  or  traditional
(those  without  AI  elements)  systems.  This  article
provides  an  overview  of  how  machine  learning
components/subsystems “fit” in the systems engineering
framework,  identifies  characteristics  of  AI  subsystems
that create challenges in their V&V, illuminates those
challenges, and provides some potential solutions while
noting open or continuing areas of research in the V&V
of AI subsystems.
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Overview of V&V for AI-based
Systems
Conventional systems are engineered via 3 overarching
phases, namely, requirements, design and V&V. These
phases are applied to each subsystem and to the system
under study. As shown in Figure 1, this is the case even
if the subsystem is based on AI techniques.

Figure 1. Systems Engineering Phases for Systems
Containing Machine Learning and Conventional Subsystems.

(SEBoK Original, modeled after (Kuwajima et al. 2020))

AI-based  systems  follow  a  different  lifecycle  than  do
traditional  systems. As shown in the general  machine
learning life cycle illustrated in Figure 2, V&V activities
occur  throughout  the  life  cycle.  In  addition  to
requirements allocated to the AI subsystem (as is the
case for  conventional  subsystems),  there also may be
requirements for data that flow up to the system from
the AI subsystem.
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Figure 2. General AI Life Cycle/Workflow. (SEBoK Original)

Characteristics of AI Leading to
V&V Challenges
Though some aspects of V&V for conventional systems
can be used without modification, there are important
characteristics of AI subsystems that lead to challenges
in  their  verification  and  validation.  In  a  survey  of
engineers,  Ishikawa  and  Yoshioka  (2019)  identify
attributes  of  machine  learning  that  make  the
engineering of same difficult. According to the engineers
surveyed,  the  top  attributes  with  a  summary  of  the
engineers’ comments are:

Lack of an oracle:  It is difficult or impossible to clearly
define the correctness criteria for system outputs or
the right outputs for each individual input.
Imperfection: It is intrinsically impossible to for an AI
system to be 100% accurate.
Uncertain behavior for untested data: There is high
uncertainty about how the system will behave in
response to untested input data, as evidenced by
radical changes in behavior given slight changes in
input (e.g., adversarial examples).
High dependency of behavior on training data: System
behavior is highly dependent on the training data.

These attributes are characteristic of AI itself and can be
generalized as follows:

Erosion of determinism
Unpredictability and unexplainability of individual
outputs (Sculley et al., 2014)
Unanticipated, emergent behavior, and unintended

http://sandbox.sebokwiki.org/File:Figure2_MLprocess.png


consequences of algorithms
Complex decision making of the algorithms
Difficulty of maintaining consistency and weakness
against slight changes in inputs (Goodfellow et al.,
2015)

V&V Challenges of AI Systems

Requirements

Challenges  with  respect  to  AI  requirements  and  AI
requirements engineering are extensive and due in part
to the practice by some to treat the AI element as a
“black box” (Gunning 2016).  Formal  specification has
been attempted and has shown to be difficult for those
hard-to-formalize tasks and requires decisions on the use
of quantitative or Boolean specifications and the use of
data and formal requirements. The challenge here is to
design  effective  methods  to  specify  both  desired  and
undesired  properties  of  systems  that  use  AI-  or  ML-
based components (Seshia 2020).

A taxonomy of AI requirements engineering challenges,
outlined by Belani and colleagues (2019), is shown in
Table 1.

Table 1: Requirements engineering for AI (RE4AI)
taxonomy, mapping challenges to AI-related entities and
requirements engineering activities (after (Belani et al.,

2019))
RE4AI AI Related Entities

RE Activities Data Model System

Elicitation

- Availability of
large datasets
-
Requirements
analyst
upgrade

- Lack of
domain
knowledge
- Undeclared
consumers

- How to
define
problem
/scope
- Regulation
(e.g., ethics)
not clear

Analysis

- Imbalanced
datasets, silos
- Role: data
scientist
needed

- No trivial
workflows
- Automation
tools needed

- No
integration of
end results
- Role:
business
analyst
upgrade



Specification

- Data labelling
is costly,
needed
- Role: data
engineer
needed

- No end-to-
end pipeline
support
- Minimum
viable model
useful

- Avoid design
anti- patterns
- Cognitive /
system
architect
needed

Validation

- Training data
critical
analysis
- Data
dependencies

-
Entanglement,
CACE problem
- High
scalability
issues for ML

- Debugging,
interpretability
- Hidden
feedback
loops

Management

- Experiment
management
- No GORE-
like method
polished

- Difficult to
log and
reproduce
- DevOps
role for AI
needed

- IT resource
limitations,
costs
- Measuring
performance

Documentation

- Data & model
visualization
- Role:
research
scientist
useful

- Datasets and
model
versions
- Education
and training
of staff

- Feedback
from end-
users
-
Development
method

All of the
Above

- Data privacy and data safety
- Data dependencies

CACE: change anything, change everything

GORE: goal-oriented requirements engineering

Data

Data is the life-blood of AI capabilities given that it is
used to train and evaluate AI models and produce their
capabilities. Data quality attributes of importance to AI
include accuracy, currency and timeliness, correctness,
consistency,  in  addition  to  usability,  security  and
privacy, accessibility, accountability, scalability, lack of
bias  and  others.  As  noted  above,  the  correctness  of
unsupervised methods is embedded in the training data
and the environment.

There is a question of coverage of the operational space
by the training data.  If  the data does not adequately
cover  the  operational  space,  the  behavior  of  the  AI
component  is  questionable.  However,  there  are  no
strong guarantees on when a data set it ‘large enough’.
In  addition,  ‘large’  is  not  sufficient.  The  data  must
sufficiently cover the operational space.

Another challenge with data is that of adversarial inputs.



Szegedy et al. (2014) discovered that several ML models
are vulnerable to adversarial examples. This has been
shown  many  times  on  image  classification  software,
however, adversarial attacks can be made against other
AI tasks (e.g., natural language processing) and against
techniques other than neural networks (typically used in
image  classification)  such  as  reinforcement  learning
(e.g., reward hacking) models.

Model

Numerous  V&V challenges  arise  in  the  model  space,
some of which are provided below.

Modeling the environment: Unknown variables,
determining the correct fidelity to model, modeling
human behavior. The challenge problem is providing a
systematic method of environment modeling that
allows one to provide provable guarantees on the
system’s behavior even when there is considerable
uncertainty about the environment. (Seshia 2020)
Modeling learning systems: Very high dimensional
input space, very high dimensional parameter or state
space, online adaptation/evolution, modeling context
(Seshia 2020).
Design and verification of models and data: data
generation, quantitative verification, compositional
reasoning, and compositional specification (Seshia
2020). The challenge is to develop techniques for
compositional reasoning that do not rely on having
complete compositional specifications (Seshia 2017).
Optimization strategy must balance between over-
and under-specification. One approach, instead of
using distance (between predicted and actual results)
measures, uses the cost of an erroneous result (e.g.,
an incorrect classification) as a criterion (Faria, 2018)
(Varshney, 2017).
Online learning: requires monitoring; need to ensure
its exploration does not result in unsafe states.
Formal methods: intractable state space explosion
from complexity of the software and the system’s
interaction with its environment, an issue with formal
specifications.
Bias in algorithms from underrepresented or
incomplete training data OR reliance on flawed
information that reflects historical inequities. A biased



algorithm may lead to decisions with collective
disparate impact. Trade-off between fairness and
accuracy in the mitigation of an algorithm’s bias.
Test coverage: effective metrics for test coverage of
AI components is an active area of research with
several candidate metrics, but currently no clear best
practice.

Properties

Assurance of several AI system properties is necessary
to  enable  trust  in  the  system,  e.g.,  the  system’s
trustworthiness.  This  is  a  separate  though  necessary
aspect  of  system dependability  for  AI  systems.  Some
important  properties  are  listed  below  and  though
extensive,  are  not  comprehensive.

Accountability: refers to the need of an AI system to
be answerable for its decisions, actions and
performance to users and others with whom the AI
system interacts
Controllability: refers to the ability of a human or other
external agent to intervene in the AI system’s
functioning
Explainability: refers to the property of an AI system
to express important factors influencing the AI system
results or to provide details/reasons behind its
functioning so that humans can understand
Interpretability:  refers to the degree to which a
human can understand the cause of a decision (Miller
2017)
Reliability: refers to the property of consistent
intended behavior and results
Resilience: refers to the ability of a system to recover
operations quickly following an incident
Robustness: refers to the ability of a system to
maintain its level of performance when errors occur
during execution and to maintain that level of
performance given erroneous inputs and parameters
Safety: refers to the freedom from unacceptable risk
Transparency: refers to the need to describe, inspect
and reproduce the mechanisms through which AI
systems make decisions, communicating this to
relevant stakeholders.



V&V Approaches and Standards

V&V Approaches

Prior to the proliferation of deep learning, research on
V&V  of  neural  networks  touched  on  adaptation  of
available standards, such as the then-current IEEE Std
1012 (Software  Verification  and Validation)  processes
(Pullum et  al.  2007),  areas need to be augmented to
enable  V&V (Taylor  2006),  and examples  of  V&V for
high-assurance  systems  with  neural  networks
(Schumann  et  al.,  2010).  While  these  books  provide
techniques and lessons learned, many of which remain
relevant,  additional  challenges  due  to  deep  learning
remain unsolved.

One of the challenges is data validation. It is vital that
the data upon which AI  depends undergo V&V.  Data
quality  attributes  that  are  important  for  AI  systems
include accuracy, currency and timeliness, correctness,
consistency, usability, security and privacy, accessibility,
accountability, scalability, lack of bias, and coverage of
the state space. Data validation steps can include file
validation,  import  validation,  domain  validation,
transformation validation, aggregation rule and business
validation (Gao et al. 2011).

There are several approaches to V&V of AI components,
including  formal  methods  (e.g.,  formal  proofs,  model
checking,  probabilistic  verification),  software  testing,
simulation-based testing and experiments. Some specific
approaches are:

Metamorphic testing to test ML algorithms, addressing
the oracle problem (Xie et al., 2011)
A ML test score consisting of tests for features and
data, model development and ML infrastructure, and
monitoring tests for ML (Breck et al., 2016)
Checking for inconsistency with desired behavior and
systematically searching for worst-case outcomes
when testing consistency with specifications.
Corroborative verification (Webster et al., 2020), in
which several verification methods, working at
different levels of abstraction and applied to the same
AI component, may prove useful to verification of AI
components of systems.
Testing against strong adversarial attacks (Useato,
2018); researchers have found that models may show



robustness to weak adversarial attacks and show little
to no accuracy to strong attacks (Athalye et al., 2018,
Uesato et al., 2018, Carlini and Wagner, 2017).
Use of formal verification to prove that models are
consistent with specifications, e.g., (Huang et al.,
2017).

Assurance cases combining the results of V&V and
other activities as evidence to support claims on the
assurance of systems with AI components (Kelly and
Weaver, 2004; Picardi et al. 2020).

Standards

Standards  development  organizations  (SDO)  are
earnestly working to develop standards in AI, including
the safety and trustworthiness of AI systems. Below are
just  a  few of  the  SDOs  and  their  AI  standardization
efforts.

ISO is the first international SDO to set up an expert
group  to  carry  out  standardization  activities  for  AI.
Subcommittee  (SC)  42  is  part  of  the  joint  technical
committee ISO/IEC JTC 1. SC 42 has a working group on
foundational  standards to provide a framework and a
common vocabulary, and several other working groups
on computational approaches to and characteristics of AI
systems,  trustworthiness,  use  cases,  applications,  and
big data. (https://www.iso.org/committee/6794475.html)

The IEEE P7000 series of projects are part of the IEEE
Global Initiative on Ethics of Autonomous and Intelligent
Systems,  launched  in  2016.  IEEE  P7009,  “Fail-Safe
Design of Autonomous and Semi-Autonomous Systems”
i s  o n e  o f  1 3  s t a n d a r d s  i n  t h e  s e r i e s .
(https://standards.ieee.org/project/7009.html)

Underwriters  Laboratory  has  been  involved  in
technology  safety  for  125  years  and  has  released
ANSI/UL 4600 “Standard for Safety for the Evaluation of
Autonomous Products”. (https://ul.org/UL4600)

The  SAE  G-34,  Artificial  Intelligence  in  Aviation,
Committee is responsible for creating and maintaining
SAE  Technical  Reports,  including  standards,  on  the
implementation and certification aspects related to AI
technologies inclusive of any on or off-board system for
the safe operation of aerospace systems and aerospace
v e h i c l e s .
(https://www.sae.org/works/committeeHome.do?comtID

https://www.iso.org/committee/6794475.html
https://standards.ieee.org/project/7009.html
https://www.sae.org/works/committeeHome.do?comtID=TEAG34


=TEAG34)

References

Works Cited

Belani,  Hrvoje,  Marin  Vuković,  and  Željka  Car.
Requirements  Engineering  Challenges  in  Building  AI-
Based Complex Systems. 2019. IEEE 27th International
Requirements  Engineering  Conference  Workshops
(REW).

Breck, Eric, Shanqing Cai, Eric Nielsen, Michael Salib
and D. Sculley. What’s your ML Test Score? A Rubric for
ML  Production  Systems.  2016.  30th  Conference  on
Neural  Information  Processing  Systems  (NIPS  2016),
Barcelona Spain.

Daume III, Hal, and Daniel Marcu. Domain adaptation
for statistical classifiers. Journal of Artificial Intelligence
Research, 26:101–126, 2006.

Dreossi,  T.,  A.  Donzé,  S.A.  Seshia.  Compositional
falsification  of  cyber-physical  systems  with  machine
learning components. In Barrett, C., M. Davies, T. Kahsai
(eds.)  NFM  2017.  LNCS,  vol.  10227,  pp.  357-372.
S p r i n g e r ,  C h a m  ( 2 0 1 7 ) .
https://doi.org/10.1007/978-3-319-57288-8_26

Faria, José M. Machine learning safety: An overview. In
Proceedings  of  the  26th  Safety-Critical  Systems
Symposium,  York,  UK,  February  2018.

Farrell,  M.,  Luckcuck,  M.,  Fisher,  M.  Robotics  and
Integrated  Formal  Methods.  Necessity  Meets
Opportunity.  In:  Integrated  Formal  Methods.  pp.
161-171.  Springer  (2018).

Gao, Jerry, Chunli Xie, and Chuanqi Tao. 2016. Big Data
Validation and Quality Assurance – Issues,  Challenges
and Needs. 2016 IEEE Symposium on Service-Oriented
System  Engineering  (SOSE),  Oxford,  UK,  2016,  pp.
433-441, doi: 10.1109/SOSE.2016.63.

Gleirscher,  M.,  Foster,  S.,  Woodcock,  J.  New
Opportunities  for  Integrated  Formal  Methods.  ACM
Computing  Surveys  52(6),  1-36  (2020).

Goodfellow, Ian, J. Shlens, C. Szegedy. Explaining and
harnessing  adversarial  examples.  In  International
Conference  on  Learning  Representations  (ICLR),  May

https://www.sae.org/works/committeeHome.do?comtID=TEAG34


2015.

Gunning, D. Explainable Artificial Intelligence (XAI). In
IJCAI  2016 Workshop on Deep Learning for  Artificial
Intelligence (DLAI), July 2016.

Huang, X., M. Kwiatkowska, S. Wang, and M. Wu. Safety
Verification of deep neural networks. In. Majumdar, R.,
and V. Kunčak (eds.) CAV 2017. LNCS, vol. 10426, pp.
3 - 2 9 .  S p r i n g e r ,  C h a m  ( 2 0 1 7 ) .
https://doi.org/10.1007/978-3-319-63387-9_1

Ishikawa,  Fuyuki  and  Nobukazu  Yoshioka.  How  do
Engineers  Perceive  Difficulties  in  Engineering  of
Machine-Learning  Systems?  -  Questionnaire  Survey.
2019  IEEE/ACM Joint  7th  International  Workshop  on
Conducting Empirical Studies in Industry (CESI) and 6th
International  Workshop  on  Software  Engineering
Research  and  Industrial  Practice  (SER&IP)  (2019)

Jones,  Cliff  B.  Tentative  steps  toward  a  development
method for interfering programs. ACM Transactions on
Programming  Languages  and  Systems  (TOPLAS),
5(4):596–619,  1983.

Kelly, T., and R. Weaver. The goal structuring notation –
a safety argument notation. In Dependable Systems and
Networks  2004  Workshop  on  Assurance  Cases,  July
2004.

Klein, G., Andronick, J., Fernandez, M., Kuz, I., Murray,
T.,  Heiser,  G.  Formally  verified  software  in  the  real
world. Comm. of the ACM 61(10), 68-77 (2018).

Kuwajima,  Hiroshi,  Hirotoshi  Yasuoka,  and  Toshihiro
Nakae.  Engineering  problems  in  machine  learning
systems.  Machine  Learning  (2020)  109:1103–1126.
https://doi.org/10.1007/s10994-020-05872-w

Lwakatare, Lucy Ellen, Aiswarya Raj, Ivica Crnkovic, Jan
Bosch,  and  Helena  Holmström  Olsson.  Large-scale
machine  learning  systems  in  real-world  industrial
settings:  A  review  of  challenges  and  solutions.
Information  and  Software  Technology  127  (2020)
106368

Luckcuck,  M.,  Farrell,  M.,  Dennis,  L.A.,  Dixon,  C.,
Fisher,  M.  Formal  Specification  and  Verification  of
Autonomous  Robotic  Systems:  A  Survey.  ACM
Computing  Surveys  52(5),  1-41  (2019).

Marijan, Dusica and Arnaud Gotlieb. Software Testing
for  Machine  Learning.  The  Thirty-Fourth  AAAI



Conference  on  Artificial  Intelligence  (AAAI-20)  (2020)

Miller, Tim. Explanation in artificial intelligence: Insights
f r o m  t h e  s o c i a l  s c i e n c e s .  a r X i v  P r e p r i n t
arXiv:1706.07269.  (2017).

Pei,  K.,  Y.  Cao,  J  Yang,  and  S.  Jana.  DeepXplore:
automated whitebox testing of deep learning systems. In
The 26th  Symposium on Operating Systems Principles
(SOSP 2017), pp. 1-18, October 2017.

Picardi, Chiara, Paterson, Colin, Hawkins, Richard David
et  al.  (2020)  Assurance  Argument  Patterns  and
Processes  for  Machine  Learning  in  Safety-Related
Systems. In: Proceedings of the Workshop on Artificial
Intelligence  Safety  (SafeAI  2020).  CEUR  Workshop
Proceedings,  pp.  23-30.

Pullum,  Laura L.,  Brian Taylor,  and Marjorie  Darrah,
Guidance for the Verification and Validation of Neural
Networks, IEEE Computer Society Press (Wiley), 2007.

Rozier,  K.Y.  Specification:  The  Biggest  Bottleneck  in
Formal Methods and Autonomy. In: Verified Software.
Theories,  Tools,  and  Experiments.  pp.  8-26.  Springer
(2016).

Schumann,  Johan,  Pramod  Gupta  and  Yan  Liu.
Application  of  neural  networks  in  High  Assurance
Systems: A Survey. In Applications of Neural Networks
in High Assurance Systems,  Studies in Computational
Intelligence,  pp.  1-19.  Springer,  Berlin,  Heidelberg,
2010.

Sculley, D., Gary Holt, Daniel Golovin, Eugene Davydov,
Todd Phillips, Dietmar Ebner, Vinay Chaudhary, Michael
Young,  Jean-François  Crespo,  and  Dan  Dennison.
Machine  Learning:  the  high  interest  credit  card  of
technical  debt.  In  NIPS  2014  Workshop  on  Software
Engineering for Machine Learning (SE4ML), December
2014.

Seshia,  Sanjit  A.  Compositional  verification  without
compositional specification for learning-based systems.
Technical  Report  UCB/EECS-2017-164,  EECS
Department,  University  of  California,  Berkeley,  Nov
2017.

Seshia, Sanjit A., Dorsa Sadigh, and S. Shankar Sastry.
Towards  Ver i f i ed  Ar t i f i c i a l  In te l l igence .
arXiv:1606.08514v4  [cs.AI]  23  Jul  2020.

Szegedy, Christian, Zaremba, Wojciech, Sutskever, Ilya,



Bruna,  Joan,  Erhan,  Dumitru,  Goodfellow,  Ian  J.,  and
Fergus, Rob. Intriguing properties of neural networks.
I C L R ,  a b s / 1 3 1 2 . 6 1 9 9 ,  2 0 1 4 b .  U R L
http://arxiv.org/abs/1312.6199.

Taylor,  Brian,  ed.  Methods  and  Procedures  for  the
Verification and Validation of Artificial Neural Networks,
Springer-Verlag, 2005.

Thompson,  E.  (2007).  Mind  in  l i fe :  Biology,
phenomenology, and the sciences of mind. Cambridge,
MA: Harvard University Press.

Tiwari, Ashish, Bruno Dutertre, Dejan Jovanović, Thomas
de  Candia,  Patrick  D.  Lincoln,  John  Rushby,  Dorsa
Sadigh, and Sanjit Seshia. Safety envelope for security.
In Proceedings of the 3rd International Conference on
High  Confidence  Networked  Systems  (HiCoNS),  pp.
85-94, Berlin, Germany, April 2014. ACM.

Uesato, Jonathan, O’Donoghue, Brendan, van den Oord,
Aaron,  Kohli,  Pushmeet.  Adversarial  Risk  and  the
Dangers  of  Evaluating  Against  Weak  Attacks.
Proceedings  of  the  35th  International  Conference  on
Machine Learning, Stockholm, Sweden, PMLR 80, 2018.

Varshney, Kush R., and Homa Alemzadeh. On the safety
of  machine learning:  Cyber-physical  systems,  decision
sciences,  and  data  products.  Big  Data,  5(3):246–255,
2017.

Webster,  M.,  Wester,  D.G.,  Araiza-Illan,  D.,  Dixon, C.,
Eder, K., Fisher, M., Pipe, A.G. A corroborative approach
to verification and validation of human-robot teams. J.
Robotics Research 39(1) (2020).

Xie, Xiaoyuan, J.W.K. Ho, C. Murphy, G. Kaiser, B. Xu,
and T.Y. Chen. 2011. “Testing and Validating Machine
Learning Classifiers by Metamorphic Testing,” Journal of
Sof tware  Test ing ,  Apr i l  1 ,  84(4) :  544-558,
doi:10.1016/j.jss.2010.11.920.

Zhang,  J.,  Li,  J.  Testing  and  verification  of  neural-
network-based  safety-critical  control  software:  A
systematic literature review. Information and Software
Technology 123, 106296 (2020).

Zhang,  J.M.,  Harman,  M.,  Ma,  L.,  Liu,  Y.  Machine
learning testing: Survey, landscapes and horizons. IEEE
Transactions  on  Software  Engineering.  2020,  doi:
10.1109/TSE.2019.2962027.



Primary References

Belani,  Hrvoje,  Marin  Vuković,  and  Željka  Car.
Requirements  Engineering  Challenges  in  Building  AI-
Based Complex Systems. 2019. IEEE 27th International
Requirements  Engineering  Conference  Workshops
(REW).

Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A. 2018.
Output  range  analysis  for  deep  feedforward  neural
networks. In: NASA Formal Methods. pp. 121-138.

Gopinath,  D.,  G.  Katz,  C.  Pāsāreanu,  and  C.  Barrett.
2018. DeepSafe: A Data-Driven Approach for Assessing
Robustness of Neural Networks. In: ATVA.

Huang, X., M. Kwiatkowska, S. Wang and M. Wu. 2017.
Safety Verification of Deep Neural Networks. Computer
Aided Verification.

Jha, S., V. Raman, A. Pinto, T. Sahai, and M. Francis.
2017.  On  Learning  Sparse  Boolean  Formulae  for
Explaining  AI  Decisions,  NASA  Formal  Methods.

Katz, G., C. Barrett, D. Dill, K. Julian, M. Kochenderfer.
2017. Reluplex: An Efficient SMT Solver for Verifying
D e e p  N e u r a l  N e t w o r k s ,
https://arxiv.org/abs/1702.01135.

Leofante,  F.,  N.  Narodytska,  L.  Pulina,  A.  Tacchella.
2018.  Automated  Verification  of  Neural  Networks:
Advances ,  Cha l l enges  and  Perspec t i ves ,
https://arxiv.org/abs/1805.09938  Marijan,  Dusica  and
Arnaud Gotlieb. Software Testing for Machine Learning.
The  Thirty-Fourth  AAAI  Conference  on  Artificial
Intelligence  (AAAI-20)  (2020)

Mirman,  M. ,  T .  Gehr,  and  M.  Vechev.  2018.
Differentiable  Abstract  Interpretation  for  Provably
Robust  Neural  Networks.  International  Conference on
Machine Learning.

Pullum,  Laura L.,  Brian Taylor,  and Marjorie  Darrah,
Guidance for the Verification and Validation of Neural
Networks, IEEE Computer Society Press (Wiley), 2007.

Seshia, Sanjit A., Dorsa Sadigh, and S. Shankar Sastry.
Towards  Ver i f i ed  Ar t i f i c i a l  In te l l igence .
arXiv:1606.08514v4  [cs.AI]  23  Jul  2020.

Taylor,  Brian,  ed.  Methods  and  Procedures  for  the
Verification and Validation of Artificial Neural Networks,
Springer-Verlag, 2005.



Xiang, W., P. Musau, A. Wild, D.M. Lopez, N. Hamilton,
X. Yang, J. Rosenfeld, and T. Johnson. 2018. Verification
for Machine Learning, Autonomy, and Neural Networks
Survey. https://arxiv.org/abs/1810.01989

Zhang,  J.,  Li,  J.  Testing  and  verification  of  neural-
network-based  safety-critical  control  software:  A
systematic literature review. Information and Software
Technology 123, 106296 (2020).

Additional References

Jha,  Sumit  Kumar,  Susmit  Jha,  Rickard Ewetz,  Sunny
Raj, Alvaro Velasquez, Laura L. Pullum, and Ananthram
Swami.  An  Extension  of  Fano’s  Inequality  for
Characterizing  Model  Susceptibility  to  Membership
Inference Attacks.  arXiv:2009.08097v1 [cs.LG] 17 Sep
2020.

Sunny  Raj,  Mesut  Ozdag,  Steven  Fernandes,  Sumit
Kumar Jha, Laura Pullum, “On the Susceptibility of Deep
Neural  Networks to Natural  Perturbations,”  AI Safety
2019 (held in conjunction with IJCAI 2019 - International
Joint  Conference  on  Artificial  Intelligence),  Macao,
China,  August  2019.

Ak,  R.,  R.  Ghosh,  G.  Shao,  H.  Reed,  Y.-T.  Lee,  L.L.
Pullum.  “Verification-Validation  and  Uncertainty
Quantification  Methods  for  Data-Driven  Models  in
Advanced  Manufacturing,”  ASME  Verification  and
Validation  Symposium,  Minneapolis,  MN,  2018.

Pullum, L.L., C.A. Steed, S.K. Jha, and A. Ramanathan.
“Mathematically Rigorous Verification and Validation of
Scientific  Machine Learning,”  DOE Scientific  Machine
Learning Workshop, Bethesda, MD, Jan/Feb 2018.

Ramanathan, A., L.L. Pullum, Zubir Husein, Sunny Raj,
Neslisah Totosdagli,  Sumanta Pattanaik,  and S.K. Jha.
2017.  “Adversarial  attacks  on  computer  vision
algorithms using natural perturbations.” In 2017 10th
International  Conference on Contemporary Computing
(IC3). Noida, India. August 2017.

Raj, S., L.L. Pullum, A. Ramanathan, and S.K. Jha. 2017.
“Work in Progress: Testing Autonomous cyber-physical
systems  using  fuzzing  features  derived  from
convolutional  neural  networks.”  In  ACM  SIGBED
International  Conference  on  Embedded  Software
(EMSOFT).  Seoul,  South  Korea.  October  2017.

Raj,  S.,  L.L.  Pullum,  A.  Ramanathan,  and  S.K.  Jha,



“SATYA:  Defending  against  Adversarial  Attacks  using
Statistical  Hypothesis  Testing,”  in  10th  International
Symposium  on  Foundations  and  Practice  of  Security
(FPS 2017), Nancy, France. (Best Paper Award), 2017.

Ramanathan, A., Pullum, L.L., S. Jha, et al. “Integrating
Symbolic and Statistical Methods for Testing Intelligent
Systems:  Applications  to  Machine  Learning  and
Computer Vision.” IEEE Design, Automation & Test in
Europe(DATE), 2016.

Pullum, L.L., C. Rouff, R. Buskens, X. Cui, E. Vassiv, and
M. Hinchey,  “Verification of  Adaptive  Systems,”  AIAA
Infotech@Aerospace 2012, April 2012.

Pullum,  L.L.,  and  C.  Symons,  “Failure  Analysis  of  a
Complex  Learning  Framework  Incorporating  Multi-
Modal and Semi-Supervised Learning,” In IEEE Pacific
Rim  International  Symposium  on  Dependable
Computing(PRDC  2011),  308-313,  2011.   

Haglich,  P.,  C.  Rouff,  and  L.L.  Pullum,  “Detecting
Emergent  Behaviors  with  Semi-Boolean  Algebra,”
Proceedings  of  AIAA  Infotech  @  Aerospace,  2010.

Pullum, L.L.,  Marjorie A. Darrah, and Brian J.  Taylor,
“Independent  Verification  and  Validation  of  Neural
Networks  –  Developing  Practitioner  Assistance,”
Software  Tech  News,  July  2004.

< Previous Article | Parent Article | Next Article >
SEBoK v. 2.10, released 06 May 2024

Retrieved from
"https://sandbox.sebokwiki.org/index.php?title=Verification_and_Vali
dation_of_Systems_in_Which_AI_is_a_Key_Element&oldid=71922"

This page was last edited on 2 May 2024, at 23:23.

http://sandbox.sebokwiki.org/Artificial_Intelligence
http://sandbox.sebokwiki.org/Emerging_Topics
http://sandbox.sebokwiki.org/Transitioning_Systems_Engineering_to_a_Model-based_Discipline
https://sandbox.sebokwiki.org/index.php?title=Verification_and_Validation_of_Systems_in_Which_AI_is_a_Key_Element&oldid=71922
https://sandbox.sebokwiki.org/index.php?title=Verification_and_Validation_of_Systems_in_Which_AI_is_a_Key_Element&oldid=71922

