
Physical Architecture
Editor's Corner > Applying the Systems Approach > Special:WhatLinksHere
> Physical Architecture

The printable version is no longer supported and may
have rendering errors. Please update your browser
bookmarks and please use the default browser print
function instead.

Lead Authors: Alan Faisandier, Rick Adcock

Physical Architecture Model Development may be used
as a task of the activity "Develop candidate architectures
models and views," or a sub-process of the System
Architecture Design Definition process. Its purpose is to
elaborate models and views of a physical, concrete
solution that accommodates the logical architecture
model and satisfies and trades-off system requirements.
Once a logical architecture model is defined (see Logical
Architecture Model Development), concrete physical
elements have to be identified that can support
functional, behavioral, and temporal features as well as
the expected properties of the system deduced from non-
functional system requirements (e.g. constraint of
replacement of obsolescence, and/or continued product
support).

A physical architecture model is an arrangement of
physical elements, (system elements and physical
interfaces) that provides the solution for a product,
service, or enterprise. It is intended to satisfy logical
architecture elements and system requirements
ISO/IEC/IEEE 26702 (ISO 2007). It is implementable
through technological system elements. System
requirements are allocated to both the logical and
physical architectures. The resulting system architecture
is assessed with system analysis and when completed
becomes the basis for system realization.

In some cases, particularly when multiple systems are to
be defined to a common physical architecture model, one
of the drivers for the physical architecture model may be
interface standards; these physical interfaces may well
be one of the most important concerns for these systems.
It is quite possible that such interface standards are
mandated at a high level in the system requirements. On

http://sandbox.sebokwiki.org/Editor%27s_Corner
http://sandbox.sebokwiki.org/Applying_the_Systems_Approach
http://sandbox.sebokwiki.org/Special:WhatLinksHere
http://sandbox.sebokwiki.org/Physical_Architecture
http://sandbox.sebokwiki.org/System_Architecture_Design_Definition
http://sandbox.sebokwiki.org/System_Architecture_Design_Definition
http://sandbox.sebokwiki.org/Logical_Architecture_Model_Development
http://sandbox.sebokwiki.org/Logical_Architecture_Model_Development

the other hand, it is equally possible for standards to be
derived during physical architecture model development
and these can be critical enablers for desirable
engineering outcomes, such as: families of systems,
technology insertion, interoperability and “open
systems”. For example, today’s video, hi-fi, and computer
systems have all benefited from adoption of interface
standards. Other examples exist in most fields of
engineering from nuts and bolts, plumbing, electrical
installations, rail gauges, TCP/IP, IT systems and
software to modular defense and space systems.

Note: The term Physical Architecture is a contraction of
the expression Physical View of the System Architecture.

Contents
Concepts and Principles

System Element, Physical Interface, and Physical
Architecture Model
Design Property
Allocation of Logical Elements to Physical Elements
and Partitioning
Developing Candidate Physical Architecture Models
Evaluating and Selecting the Preferred Candidate
Legacy Systems and Systems of Systems

Process Approach
Purpose
Activities of the Process
Artifacts, Methods and Modeling Techniques

Practical Considerations
Pitfalls
Proven Practices

References
Works Cited
Primary References
Additional References

Concepts and Principles

#System_Element.2C_Physical_Interface.2C_and_Physical_Architecture_Model
#System_Element.2C_Physical_Interface.2C_and_Physical_Architecture_Model
#Artifacts.2C_Methods_and_Modeling_Techniques

System Element, Physical Interface, and
Physical Architecture Model

A system element is a discrete part of a system that can
be implemented to fulfill design properties. A system
element can be hardware, software, data, humans,
processes (e.g., processes that provide a service to
users), procedures (e.g., operator instructions), facilities,
materials, and naturally occurring entities (e.g., water,
organisms, and minerals), or any combination of these
ISO/IEC/IEEE 15288 (ISO 2015). A physical interface
binds two system elements together; this is similar to a
link or a connector. Table 1 provides some examples of
system elements and physical interfaces.

Table 1. Types of System Elements and Physical
Interfaces. (SEBoK Original)

Element Product
System

Service
System

Enterprise
System

System
Element

• Hardware
Parts
(mechanics,
electronics,
electrical,
plastic,
chemical, etc.)
• Operator
Roles
• Software
Pieces

• Processes,
Data Bases,
Procedures,
etc.
• Operator
Roles
• Software
Applications

• Corporate,
Direction,
Division,
Department,
Project,
Technical Team,
Leader, etc.
• IT Components

Physical
Interface

* Hardware
Parts, Protocols,
Procedures, etc.

* Protocols,
Documents,
etc.

* Protocols,
Procedures,
Documents, etc.

A complex system composed of thousands of physical
and/or intangible parts may be structured in several
layers of systems and system elements. The number of
elements in a level of the structure of one system is
limited to only a few, in order to facilitate managing the
system definition; a common guideline is five plus or
minus two elements (see illustration in Figure 1).

Figure 1. Layers of Systems and System Elements
(Faisandier 2012). Permission granted by Sinergy'Com. All other

rights are reserved by the copyright owner.

A physical architecture model is built from systems,
system elements, and all necessary physical interfaces
between these elements, as well as from external
elements (neighboring or enabling systems and/or
system elements in the considered layer and concerned
elements in the context of the global system-of-interest) -
see illustration in Figure 2.

Figure 2. Physical Architecture Model Representation
(Faisandier 2012). Permission granted by Sinergy'Com. All other

rights are reserved by the copyright owner.

Design Property

A design property is a property that is obtained during
system architecture and created through the assignment
of non-functional requirements, estimates, analyses,
calculations, simulations of a specific aspect, or through
the definition of an existing element associated with a
system element, a physical interface, and/or a physical
architecture. If the defined element complies with a
requirement, the design property will relate to (or may
equal) the requirement. Otherwise, one has to identify
any discrepancy that could modify the requirement or
design property and detect any deviations.

http://sandbox.sebokwiki.org/File:SEBoKv075_KA-SystDef_Limited_nb_in_decomposition.png
http://sandbox.sebokwiki.org/File:SEBoKv075_KA-SystDef_Encapsulation.png

Stakeholders have concerns that correspond to the
expected behavior of a system within operational,
environmental, and/or physical constraints as well as to
more general life cycle constraints. Stakeholder needs
and requirements and system requirements express
these concerns as expected capabilities from the system
(e.g., usability, interoperability, security, expandability,
environment suitability, etc.). Architects and/or
designers identify these capabilities from requirements
and deduce corresponding quantitative or qualitative
design properties to properly equip their physical
architecture model (e.g., reliability, availability,
maintainability, modularity, robustness, operability,
climatic environment resistance, dimensions limits, etc.).
For further discussion on how some of these properties
may be included in architecture and design, please see
the article Systems Engineering and Quality Attributes
in the Related Disciplines Part.

Allocation of Logical Elements to Physical
Elements and Partitioning

Developing a candidate physical architecture model for a
system consists of first identifying the system elements
that can perform functions of the logical architecture
model as well as identifying the interfaces capable of
carrying out the input-output flows and control flows.
When identifying potential elements, a systems engineer
needs to allocate design properties within the logical
architecture; these properties are deduced from the
system requirements. Partitioning and allocation are
activities to decompose, gather, or separate functions in
order to facilitate the identification of feasible system
elements that support these functions. Either they exist
and can be reused or re-purposed, or they can be
developed and technically implemented.

Partitioning and allocation use criteria to find potential
affinities between functions. Systems engineers use
system requirements and/or design properties as criteria
to assess and select candidate system elements and
partitions of functions, such as similar transformations
within the same technology, similar levels of efficiency,
exchange of the same type of input-output flows
(information, energy, and materials), centralized or
distributed controls, execution with close frequency
level, dependability conditions, environment resistance
level, and other enterprise constraints.

A concurrent engineering approach is necessary when
several different sets of technologies, knowledge, and

http://sandbox.sebokwiki.org/Systems_Engineering_and_Quality_Attributes
http://sandbox.sebokwiki.org/Related_Disciplines
http://sandbox.sebokwiki.org/System_Requirements

skills are necessary to establish a candidate physical
architecture model. This is particularly true during the
partition and allocation of functions to various system
elements, in which the systems engineer must account
for compatibility issues and emergent properties. (See
SEBoK Part 2: Synthesizing Possible Solutions for a
discussion of possible approaches.)

Developing Candidate Physical Architecture
Models

The goal of physical architecture model development
activities is to provide the best possible physical
architecture model made of suitable systems,
technological system elements, and physical interfaces
(i.e., the architecture that answers, at best, all system
requirements, depending on agreed limits or margins of
each requirement). The best way to do this is to produce
several candidate physical architecture models, assess
and compare them, and then select the most suitable
one.

A candidate physical architecture model is elaborated
according to affinity criteria in order to build a set of
system elements (i.e., separate, gather, connect, and
disconnect the network of system elements and their
physical interfaces). These criteria are the same as those
used for partitioning and allocating functions to system
elements. The physical architecture model development
may be focused in different ways, for example, it may
address:

Reduction in the number of physical interfaces
System elements that can be tested separately
Compatible technology
Measures of the proximity of elements in space
Ease of handling (weight, volume, and transportation
facilities)
Optimization of resources shared between elements
Modularity (i.e. elements have low interdependence)
Resilience (i.e. elements which are highly reliable,
maintainable or replaceable)

Evaluating and Selecting the Preferred
Candidate

Viable physical architecture models enable all required

http://sandbox.sebokwiki.org/Synthesizing_Possible_Solutions

functions or capabilities specified in the logical
architecture model to be realized. Architecture and
design activity includes evaluation to obtain a balance
among design properties, costs, risks, etc. Generally, the
physical architecture model of a system is determined
more strongly by non-functional requirements (e.g.,
performance, safety, security, environmental conditions,
constraints, etc.) than by functions. There may be many
(physical) ways to establish functions but fewer ways of
satisfying non-functional requirements. The preferred
physical architecture model represents the selection of
system elements, their physical relationships, and
interfaces. Typically, this physical architecture will still
leave further systems engineering to be undertaken to
achieve a fully optimized system after any remaining
trade-offs are made and algorithms and parameters of
the system are finalized. Certain analyses (efficiency,
dependability, cost, risks, etc.) are required to get
sufficient data that characterize the global behavior and
structure of the candidate architectures in regard to
system requirements; this is often broadly referred to as
system analysis. Other analyses and assessments require
knowledge and skills from the different involved
technologies and specialties (mechanics, electronics,
software, thermodynamics, electro-magnetic
compatibility, safety, security etc.). They are performed
through corresponding specialist analysis of the system.

Legacy Systems and Systems of Systems

Few systems come into existence or operate without
interacting with others in a system context. These
interactions may be with other operational systems, or
maintenance and support systems, which in turn may be
legacy (already in use) or future legacy (under
development and likely to operate with the system of
interest in the future).

The best chosen approach will be dependent on the
strength of interactions between the system-of-interest
(SoI) and its wider context. While these interactions are
small, they may be accounted for by defining a set of
static external interface requirements (for example,
technical standards) with which the system must comply,
by including these as constraints in the system
requirements and ensuring compliance through design
assurance.

Where the interactions are more intense (for example,
where continuous information is to be exchanged with
other systems), these will have to be recognized as part

http://sandbox.sebokwiki.org/System_Analysis

of a system of systems context and will instead be
considered as part of an enterprise systems engineering
approach.

Another important consideration may be the sharing of
technology or system elements between the SoI and
other systems, often as part of a family of systems (many
examples occur in automotive and aerospace industries)
or the re-use of system elements from existing legacy.
Here a degree of top-down or middle-out design work
will be necessary to ensure the system of interest
embodies the required system elements, while
conforming as far as possible to the stakeholder and
system requirements, with any compromises being
understood and managed.

If a System-of-Interest is intended to be used in one or
more serv ice systems or system of systems
configurations, this will affect its physical architecture
model. One of the features of these SoS is the late
binding of component systems in use. Such component
systems must be architected with open or configurable
interfaces, must have clearly defined functions packaged
in such a way as to be relevant to the SoS using them,
and must include some method by which they can be
identified and included in the SoS when needed.

Both service systems and SoS will be defined by a high-
level physical architecture model, which will be utilized
to define the relevant SoS relationships, interfaces, and
constraints that should be included in System Concept
Definition. The results will be embedded in the
stakeholder and system requirements and handled
through interface agreements and across-project
communication during development, realization, and
use.

See SEBoK Part 4: Applications of Systems Engineering
for more information on special considerations for
architecting SoS.

Process Approach

Purpose

The purpose of the Physical Architecture Model
Development is to define, select, and synthesize a system
physical architecture model which can support the
logical architecture model. A physical architecture
model will have specific properties to address
stakeholder concerns or environmental issues and to

http://sandbox.sebokwiki.org/System_Concept_Definition
http://sandbox.sebokwiki.org/System_Concept_Definition
http://sandbox.sebokwiki.org/Applications_of_Systems_Engineering

satisfy system requirements.

Because of the evolution of the context of use or
technological possibilities, the physical architecture
which is composed of system elements is supposed to
evolve along the life cycle of the system in order for it to
continue to perform its mission within the limits of its
required effectiveness. Depending on whether or not
evolution impacts logical architecture model elements,
allocations to system elements may change. A physical
architecture model is equipped with specific design
properties to continuously challenge the evolution.

Generic inputs include the selected logical architecture
model, system requirements, generic patterns and
properties that architects identify and utilize to answer
requirements, outcomes from system analysis, and
feedback from system verification and system validation.

Generic outputs are the selected physical architecture
model, allocation matrix of functional elements to
physical elements, traceability matrix with system
requirements, stakeholder requirements of each system
and system element composing the physical architecture
model, and rejected solutions.

Activities of the Process

Major activities and tasks to be performed during this
process include the following:

Partition and allocate functional elements to system
elements:

Search for system elements or technologies able
to perform functions and physical interfaces to
carry input-output and control flows. Ensure
system elements exist or can be engineered.
Assess each potential system element using
criteria deduced from design properties
(themselves deduced from non-functional system
requirements).
Partition functional elements (functions, scenarios,
input-outputs, triggers, etc.) using the given
criteria and allocate partitioned sets to system
elements (using the same criteria).
When it is impossible to identify a system element
that corresponds to a partitioned functional set,
decompose the function until the identification of
implementable system elements is possible.

Check the compatibility of technologies and the
compatibility of interfaces between selected
system elements.

Constitute candidate physical architecture models.
Because partitioned sets of functions can be
numerous, there are generally too many system
elements. For defining controllable architectures,
system elements have to be grouped into higher-
level system elements known as system element
groups, often called sub-systems in industry.
Constitute several different system element
groups corresponding to different combinations of
elementary system elements. One set of system
element groups plus one or several non-
decomposable system elements forms a candidate
physical architecture model of the considered
system.
Represent (using patterns) the physical
architecture model of each system element group
connecting its system elements with physical
interfaces that carry input-output flows and
triggers. Add physical interfaces as needed; in
particular, add interfaces with external elements
to the system element group.
Represent the synthesized physical architecture of
the considered system built from system element
groups, non-decomposable systems, and physical
interfaces inherited from the physical architecture
model of system element groups.
Enhance the physical architecture model with
design properties such as modularity, evolution
capability, adaptability to different environments,
robustness, scalability, resistance to
environmental conditions, etc.
If possible, use executable architecture prototypes
(e.g., hardware-software (HW-SW)-in-the-loop
prototypes) for identifying potential deficiencies
and correct the architecture as needed.

Assess physical architecture model candidates and
select the most suitable one:

Use the system analysis process to perform
assessments (see the System Analysis topic).
Use the Decision Management process to support
the trades and selection of the preferred
alternative (see the Decision Management topic).

http://sandbox.sebokwiki.org/System_Analysis
http://sandbox.sebokwiki.org/Decision_Management

Synthesize the selected physical architecture model:
Formalize physical elements and properties. Verify
that system requirements are satisfied and that
the solution is realistic.
Identify the derived physical and functional
elements created for the necessity of architecture
and design and the corresponding system
requirements.
Establish traceability between system
requirements and physical elements as well as
allocate matrices between functional and physical
elements.

Artifacts, Methods and Modeling
Techniques

Physical architecture descriptions use modeling
techniques to create and represent physical
architectures. Some common physical models include
structural blocks, mass, layout and other models.
Modeling techniques may be:

Physical block diagrams (PBD)
SysML block definition diagrams (BDD)
Internal block diagrams (IBD) (OMG 2010)
Executable architecture prototyping
Etc.

Depending on the type of domain for which it is to be
used (defense, enterprise, etc.), architecture frameworks
may provide descriptions that can help to trade-off
candidate architectures. Please see section 'Enterprise
Architecture Frameworks & Methodologies' in
Enterprise Systems Engineering Key Concepts.

Practical Considerations
Key pitfalls and good practices related to physical
architecture development are described in the next two
sections.

Pitfalls

Some of the key pitfalls encountered in performing
physical architecture model development are provided in
Table 3.

http://sandbox.sebokwiki.org/Enterprise_Systems_Engineering_Key_Concepts

Table 3. Pitfalls with Physical Architecture
Development. (SEBoK Original)

Pitfall Description

Too Many
Levels in a
Single System
Block

The current system block includes too many
levels of decomposition. The right practice is
that the physical architecture model of a
system block is composed of one single level
of systems and/or system elements.

No Logical
Architecture
Model

The developers perform a direct passage
from system requirements to a physical
architecture model without establishing a
logical architecture model; this is a common
wrong practice that mainly takes place when
dealing with repeating systems and products
because the functions are already known.
The issue is that a function is always
associated with input-output flows defined in
a specific domain set. If the domain set
changes, the performance of the function
can become invalid.

Direct
Allocation on
Technologies

At a high level of abstraction of
multidisciplinary systems, directly allocating
the functions onto technologies of the lowest
level of abstraction, such as hardware or
software, does not reflect a system
comprehension. The right practice is to
consider criteria to decompose the
architecture into the appropriate number of
levels, alternating logical and physical before
reaching the technology level (the last level
of the system).

Proven Practices

Some proven practices gathered from the references are
provided in Table 4.

Table 4. Proven Practices with Physical Architecture
Development. (SEBoK Original)

Practice Description

Modularity

Restrict the number of interactions between
the system elements and consider the
modularity principle (maximum of consistency
inside the system element, minimum of
physical interfaces with outside) as the right
way for architecting systems.

Focus on
Interfaces

Focusing on interfaces rather than on system
elements is another key element of a
successful architecture and design for abstract
levels of systems.

References

Works Cited

ISO/IEC. 2007. Systems Engineering – Application and
Management of The Systems Engineering Process.
Geneva, Switzerland: International Organization for
Standards (ISO)/International Electrotechnical
Commission (IEC), ISO/IEC 26702:2007.

ISO/IEC/IEEE. 2015. Systems and Software Engineering
-- System Life Cycle Processes. Geneva, Switzerland:
International Organisation for Standardisation (ISO)
/International Electrotechnical Commissions (IEC)/
Institute of Electrical and Electronics Engineers (IEEE).
ISO/IEC/IEEE 15288:2015.

OMG. 2010. OMG Systems Modeling Language
Specification, version 1.2, July 2010. Available at:
http://www.omg.org/technology/documents/spec_catalog.
htm.

Faisandier, A. 2012. Systems Architecture and Design.
Belberaud, France: Sinergy'Com.

Primary References

ANSI/IEEE. 2000. Recommended Practice for
Architectural Description for Software-Intensive
Systems. New York, NY, USA: American National
Standards Institute (ANSI)/Institute of Electrical and
Electronics Engineers (IEEE), ANSI/IEEE 1471-2000.

INCOSE. 2015. Systems Engineering Handbook - A
Guide for System Life Cycle Processes and Activities,
version 4.0. Hoboken, NJ, USA: John Wiley and Sons,
Inc, ISBN: 978-1-118-99940-0.

ISO/IEC/IEEE. 2015. Systems and Software Engineering
-- System Life Cycle Processes. Geneva, Switzerland:
International Organisation for Standardisation
(ISO)/International Electrotechnical Commissions
(IEC)/Institute of Electrical and Electronics Engineers
(IEEE). ISO/IEC/IEEE 15288:2015. ISO/IEC/IEEE. 2011.
Systems and Software Engineering - Architecture
Description. Geneva, Switzerland: International
Organization for Standardization (ISO)/International
Electrotechnical Commission (IEC)/Institute of Electrical
and Electronics Engineers (IEEE), ISO/IEC/IEEE 42010.

http://sandbox.sebokwiki.org/ISO/IEC/IEEE_15288
http://sandbox.sebokwiki.org/ISO/IEC/IEEE_15288
http://www.omg.org/technology/documents/spec_catalog.htm
http://www.omg.org/technology/documents/spec_catalog.htm
http://sandbox.sebokwiki.org/IEEE_1471
http://sandbox.sebokwiki.org/IEEE_1471
http://sandbox.sebokwiki.org/IEEE_1471
http://sandbox.sebokwiki.org/IEEE_1471
http://sandbox.sebokwiki.org/INCOSE_Systems_Engineering_Handbook
http://sandbox.sebokwiki.org/ISO/IEC/IEEE_15288
http://sandbox.sebokwiki.org/ISO/IEC/IEEE_15288
http://sandbox.sebokwiki.org/ISO/IEC/IEEE_42010
http://sandbox.sebokwiki.org/ISO/IEC/IEEE_42010
http://sandbox.sebokwiki.org/ISO/IEC/IEEE_42010

Additional References

Maier, M., and E. Rechtin. 2009. The Art of Systems
Architecting, 3rd ed. Boca Raton, FL, USA: CRC Press.

Holland, J.H. 2006. "Studying Complex Adaptive
Systems." Journal of Systems Science and Complexity.
v o l . 1 9 , n o . 1 p p . 1 - 8 . A v a i l a b l e a t :
http://hdl.handle.net/2027.42/41486.

Thome, B. 1993. Systems Engineering, Principles &
Practice of Computer-Based Systems Engineering. New
York, NY, USA: Wiley.

The Open Group. 2011. TOGAF, version 9.1. Hogeweg,
The Netherlands: Van Haren Publishing. Accessed
A u g u s t 2 9 , 2 0 1 2 . A v a i l a b l e a t :
https://www2.opengroup.org/ogsys/jsp/publications/Publi
cationDetails.jsp?catalogno=g116.

Zachman, J. 2008. "John Zachman's Concise Definition of
The Zachman Framework™." Zachman International
Enterprise Architecture. Accessed August 29, 2012.
A v a i l a b l e a t :
http://www.zachman.com/about-the-zachman-framework.

< Previous Article | Parent Article | Next Article >
SEBoK v. 2.10, released 06 May 2024

Retrieved from
"https://sandbox.sebokwiki.org/index.php?title=Physical_Architecture
&oldid=71888"

This page was last edited on 2 May 2024, at 23:19.

http://sandbox.sebokwiki.org/The_Art_of_Systems_Architecting
http://sandbox.sebokwiki.org/The_Art_of_Systems_Architecting
http://hdl.handle.net/2027.42/41486
https://www2.opengroup.org/ogsys/jsp/publications/PublicationDetails.jsp?catalogno=g116
https://www2.opengroup.org/ogsys/jsp/publications/PublicationDetails.jsp?catalogno=g116
http://www.zachman.com/about-the-zachman-framework
http://sandbox.sebokwiki.org/Logical_Architecture_Model_Development
http://sandbox.sebokwiki.org/Systems_Engineering_and_Management
http://sandbox.sebokwiki.org/System_Detailed_Design_Definition
https://sandbox.sebokwiki.org/index.php?title=Physical_Architecture&oldid=71888
https://sandbox.sebokwiki.org/index.php?title=Physical_Architecture&oldid=71888

