
Logical Architecture
Logical Architecture

The printable version is no longer supported and may
have rendering errors. Please update your browser
bookmarks and please use the default browser print
function instead.

Lead Authors: Alan Faisandier, Garry Roedler,
Contributing Author: Rick Adcock

Logical Architecture Model Development may be used as
a task of the activity "Develop candidate architectures
models and views," or a sub-process of the System
Architecture Design Definition process. Its purpose is to
elaborate models and views of the functionality and
behavior of the future engineered system as it should
operate while in service. The logical architecture model
of a engineered system of interest (SoI) is composed of a
set of related technical concepts and principles that
support the logical operation of the system. It may
include a functional architecture view, a behavioral
architecture view, and a temporal architecture view.
Other additional views are suggested in architecture
frameworks, depending on the domain.

Note: The term Logical Architecture is a contraction of
the expression Logical View of the System Architecture.

Contents
Concepts and Principles

Functional Architecture Model
Behavioral Architecture Model
Temporal Architecture Model

Process Approach
Purpose
Activities of the Process
Artifacts, Methods and Modeling Techniques

Practical Considerations

http://sandbox.sebokwiki.org/Logical_Architecture
http://sandbox.sebokwiki.org/System_Architecture_Design_Definition
http://sandbox.sebokwiki.org/System_Architecture_Design_Definition
#Artifacts.2C_Methods_and_Modeling_Techniques

Pitfalls
Proven Practices

References
Works Cited
Primary References
Additional References

Concepts and Principles

Functional Architecture Model

A functional architecture model is a set of functions and
their sub-functions that defines the transformations
performed by the system to complete its mission.

Function and Input-Output Flow - In the context of
System Architecture, functions and input-output flows
are architecture entities. A function is an action that
transforms inputs and generates outputs, involving data,
materials, and/or energies. These inputs and outputs are
the flow items exchanged between functions. The
general mathematical notation of a function is y = ƒ(x
,t), in which y and x are vectors that may be represented
graphically and t = time.

In order to define the complete set of functions of the
system, one must identify all the functions necessitated
by the system and its derived requirements, as well as
the corresponding inputs and outputs of those functions.
Generally speaking, there are two kinds of functions:

Functions that are directly deduced from functional1.
and interface requirements. These functions express
the expected services of a system necessary to meet
its system requirements.
Functions that are derived and issued from the2.
alternative solutions of the physical architecture
model and are dependent upon the result of the
design; additionally, they rely upon on technology
choice to implement the logical architecture model
elements.

Functional Hierarchy/Decomposition of Functions -
At the highest level of a hierarchy (Figure 1), it is
possible to represent a system as a unique, central
function (defined as the system's mission) that in many
ways is similar to a "black box" ("F0" in plan A-0 in

Figure 1). In order to understand, in detail, what the
system does, this "head-of-hierarchy" (F0) is broken
down into sub-functions (F1, F2, F3, F4) grouped to form
a sub-level of the hierarchy (plan A0), and so on.
Functions of the last level of a functional hierarchy can
be called leaf-functions (F21, F22, F23, F24 in plan A2).
Hierarchies (or breakdowns) decompose a complex or
global function into a set of functions for which physical
solutions are known, feasible, or possible to imagine.

This view of functional hierarchy represents a static view
of functions which would be populated at different levels
over a number of iterations, depending upon the
synthesis approach used. In general, it is not created by
a single top-down decomposition. A static functional
hierarchy on its own does not represent how effectively
the flows of inputs and outputs are exchanged, and may
need to be viewed alongside the other models below.

Figure 1. Decomposition of Functions (Faisandier 2012).
Permission granted by Sinergy'Com. All other rights are reserved by

the copyright owner.

Behavioral Architecture Model

A behavioral architecture model is an arrangement of
functions and their sub-functions as well as interfaces
(inputs and outputs) that defines the execution
sequencing, conditions for control or data-flow, and
performance level necessary to satisfy the system
requirements (ISO/IEC 26702:2007). A behavioral
architecture model can be described as a set of inter-
related scenarios of functions and/or operational modes.

Control (Trigger) - A control flow is an element that
activates a function as a condition of its execution. The
state of this element, or the condition it represents,

http://sandbox.sebokwiki.org/File:Decomposition_of_Functions_AF_071112(2).png

activates or deactivates the function (or elements
thereof). A control flow can be a signal or an event, such
as a switch being moved to the on position, an alarm, a
trigger, a temperature variation, or the push of a key on
a keyboard.

Scenario (of Functions) - A scenario of functions is a
chain of functions that are performed as a sequence and
synchronized by a set of control flows to work to achieve
a global transformation of inputs into outputs, as seen in
the figures below. A scenario of functions expresses the
dynamic of an upper level function. A behavioral
architecture is developed by considering both scenarios
for each level of the functional hierarchy and for each
level of the system hierarchy. When representing
scenarios of functions and behavioral architecture
models, it is appropriate to use diagrams as modeling
techniques, such as functional flow block diagrams
(FFBD) (Oliver, Kelliher, and Keegan 1997) or activity
diagrams, developed with SysML (OMG 2010). Figures 2
and 3 provide examples of these diagrams.

Figure 2. Illustration of a Scenario (eFFBD). (SEBoK Original)

Figure 3. Illustration of a Scenario (Activity Diagram).
(SEBoK Original)

Operational Mode - A scenario of functions can be
viewed by abstracting the transformation of inputs into
outputs of each function and focusing on the active or
non-active state of the function and its controls. This
view is called a scenario of modes, which is a chain of
modes performed as a sequence of transitions between
the various modes of the system. The transition from one
mode to another is triggered by the arrival of a control

http://sandbox.sebokwiki.org/File:Illustration_of_a_scenario_(eFFBD)_AF_071112.png
http://sandbox.sebokwiki.org/File:Illustration_of_a_scenario_Activity_Diagram_AF_071112.png

flow (event/trigger). An action (function) can be
generated within a transition between two modes
following the arrival of an event or a trigger, as
demonstrated in Figure 4 below.

Figure 4. Scenario of Operational Modes
(Faisandier 2012). Permission granted by

Sinergy'Com. All other rights are reserved by the
copyright owner.

Behavioral Patterns - When defining scenarios or
behavioral architecture models, architects may opt to
recognize and use known models to represent the
expected transformations and behaviors. Patterns are
generic basic models that may be more or less
sophisticated depending on the complexity of the
treatment (Gamma, Helm, Johnson, and Vlissides 1995).
A pattern can be represented with different notations.
Behavioral patterns are classified into several
categories, which can be seen in the following examples
(see also SEBoK Part 2: Patterns of Systems Thinking):

Basic patterns or constructs linking functions - such as
sequence, iteration, selection, concurrence, multiple
exits, loops with an exit, and replication.
Complex patterns - such as monitoring a treatment,
exchanging a message, man machine interfaces,
modes monitoring, real-time monitoring of processes,
queue management, and continuous monitoring with
supervision.
Failure detection, identification, and recovery (FDIR)
patterns - such as passive redundancies, active
redundancies, semi-active redundancies, and
treatments with reduced performance.

Temporal Architecture Model

A temporal architecture model is a classification of the
functions of a system that is derived according to the
frequency level of execution. Temporal architecture
models include the definition of synchronous and

http://sandbox.sebokwiki.org/File:SEBoKv075_KA-SystDef_Scenario_of_Operational_Modes.png
http://sandbox.sebokwiki.org/Patterns_of_Systems_Thinking

asynchronous aspects of functions. The decision
monitoring that occurs inside a system follows the same
temporal classification because the decisions are related
to the monitoring of functions.

Temporal and Decisional Hierarchy Concept - Not
every function of a system is performed at the same
frequency. The frequencies change depending on the
time and the manner in which the functions are started
and executed. One must therefore consider several
classes of performance. There are synchronous functions
that are executed cyclically and asynchronous functions
that are executed following the occurrence of an event
or trigger.

To be more specific, real-time systems and command-
control systems combine cyclical operations
(synchronous) and factual aspects (asynchronous).
Cyclical operations consist of sharing the execution of
functions according to frequencies, which depend on
either the constraints of capture or dispatching the
input/output and control f lows. Two types of
asynchronous events can be distinguished:

Disturbances on High Frequencies (bottom of figure 5)1.
- Decisions that are made at either the level they
occur or one level above. The goal is to deter
disturbances from affecting the low frequencies so
that the system continues to achieve its mission
objectives. This is the way to introduce exception
operations, with the typical example relating to
operations concerns, breakdowns, or failures.
Changes on Low Frequencies (top of figure 5) -2.
Decisions pertaining to changes that are made at the
upper levels. The ultimate goal is to transmit them
toward bottom levels to implement the modifications.
A typical example relates to operator actions,
maintenance operations, etc.

Figure 5. Temporal and Decision Hierarchy Levels
(Faisandier 2012). Permission granted by Sinergy'Com. All other

rights are reserved by the copyright owner.

Process Approach

Purpose

The purpose of the Logical Architecture Model
Development is to define, select, and synthesize a
system’s logical architecture model to provide a
framework against which to verify that a future system
will satisfy its system requirements in all operational
scenarios, within which trade-offs between system
requirements can be explored in developing such
systems.

Generic inputs to the process include system
requirements, generic architecture patterns that
architects identify and use to answer requirements,
outcomes from system analysis processes, and feedback
from system verification and validation processes.
Depending on the Life Cycle Model that is chosen, there
will be iterations through which these inputs and
outputs, and the relationships between them evolve and
change throughout the process (see also Applying Life
Cycle Processes).

Generic outputs from the process are either a single
logical architecture model or a set of candidate logical
architecture models together with the selected
independent logical architecture model and a rationale
for its selection. They include, at minimum, views and
models. These involve functional, behavioral and
temporal views, a traceability matrix between logical
architecture model elements and system requirements.

http://sandbox.sebokwiki.org/File:SEBoKv05_KA-SystDef_Temporal_and_decision_hierarchy_levels.png
http://sandbox.sebokwiki.org/System_Analysis
http://sandbox.sebokwiki.org/System_Verification
http://sandbox.sebokwiki.org/System_Validation
http://sandbox.sebokwiki.org/Applying_Life_Cycle_Processes
http://sandbox.sebokwiki.org/Applying_Life_Cycle_Processes

Activities of the Process

Major activities and tasks performed during this process
include the following:

Identify and analyze functional and behavioral
elements:

Identify functions, input-output flows, operational
modes, transition of modes, and operational
scenarios from system requirements by analyzing
the functional, interface, and operational
requirements.
Define necessary inputs and controls (energy,
material, and data flows) to each function and
outputs that result in the deduction of the
necessary functions to use, transform, move, and
generate the input-output flows.

Assign system requirements to functional and
behavioral elements:

Formally characterize functions expressions and
their attributes through the assignment of
performance, effectiveness, and constraints
requirements. In particular, study the temporal
aspects from requirements to assign duration,
response time, and frequency to functions.
Formally characterize the input, output, and
control flows expressions and their attributes
through assignment of interface, effectiveness,
operational, temporal and constraints
requirements.
Establish traceability between system
requirements and these functional and behavioral
elements.

Define candidate logical architecture models for each
candidate:

Analyze operational modes as stated in the system
requirements (if any) and/or use previously
defined elements to model sequences of
operational modes and the transition of modes.
Eventually decompose the modes into sub-modes
and then establish for each operational mode one
or several scenarios of functions recognizing
and/or using relevant generic behavioral patterns.
Integrate these scenarios of functions in order to
get a behavioral architecture model of the system

(a complete picture of the dynamic behavior).
Decompose previously defined logical elements as
necessary to look towards implementation.
Assign and incorporate temporal constraints to
previously defined logical elements, such as the
period of time, duration, frequency, response-time,
timeout, stop conditions, etc.
Define several levels of execution frequency for
functions that correspond to levels of decision, in
order to monitor system operations, prioritize
processing on this time basis, and share out
functions among those execution frequency levels
to get a temporal architecture model.
Perform functional failure modes and effects
analysis and update the logical architecture
elements as necessary.
Execute the models with simulators (when
possible) and tune these models to obtain the
expected characteristics.

Synthesize the selected independent logical
architecture model:

Select the logical architecture by assessing the
candidate logical architecture models against
assessment criteria (related to system
requirements) and compare them, using the
system analysis process to perform assessments
and decision management process for the
selection (see the System Analysis and Decision
Management topics). This selected logical
architecture model is called independent logical
architecture model because, as much as possible,
it is independent of implementation decisions.
Identify and define derived logical architecture
model elements created for the necessity of
design and corresponding with the derived system
requirements. Assign these requirements to the
appropriate system (current studied system or
external systems).
Verify and validate the selected logical
architecture models (using as executable models
as possible), make corrections as necessary, and
establish traceability between system
requirements and logical architecture model
elements.

Feedback logical architecture model development and

http://sandbox.sebokwiki.org/System_Analysis
http://sandbox.sebokwiki.org/Decision_Management
http://sandbox.sebokwiki.org/Decision_Management

system requirements. This activity is performed after
the physical architecture model development process:

Model the allocated logical architecture to systems
and system elements, if such a representation is
possible, and add any functional, behavioral, and
temporal elements as needed to synchronize
functions and treatments.
Define or consolidate derived logical and physical
elements induced by the selected logical and
physical architecture models. Define the
corresponding derived requirements and allocate
them to appropriate logical and physical
architectures elements. Incorporate these derived
requirements into the requirements baselines of
impacted systems.

Artifacts, Methods and Modeling
Techniques

Logical architecture descriptions use modeling
techniques that are grouped under the following types of
models. Several methods have been developed to
support these types of models (some are executable
models):

Functional Models – These include models such as the
structured analysis design technique (SADT/IDEF0),
system analysis & real time (SA-RT), enhanced
Functional Flow Block Diagrams (eFFBD), and the
function analysis system technique (FAST).
Semantic Models- These include models such as
entities-relationships diagrams, class diagrams, and
data flow diagrams.
Dynamic Models – These include such models as
state-transition diagrams, state-charts, eFFBDs, state
machine diagrams (SysML), activity diagrams (SysML)
(OMG 2010), and petri nets.

Depending on the type of domain (e.g. defense,
enterprise), architecture frameworks provide
descriptions that can help to represent additional
aspects/views of architectures - see the section
'Enterprise Architecture Frameworks & Methodologies'
in Enterprise Systems Engineering Key Concepts. See
also practical means for using general templates related
to ISO/IEC/IEEE 42010 (ISO 2011).

http://sandbox.sebokwiki.org/Enterprise_Systems_Engineering_Key_Concepts

Practical Considerations
As stated above, the purpose of the logical architecture
model is to provide a description of what a system must
be able to do to satisfy the stated need. This should help
to ensure that the needs and/or concerns of all
stakeholders are addressed by any solution, and that
innovative solutions, as well as those based on current
solution technologies, can be considered. In practice it is
human nature for problem stakeholders to push their
own agendas and for solution architects or designers to
offer their familiar solutions. If a logical architecture
model is not properly enforced with the chosen life cycle,
it is easy for both problem and solution stakeholders to
ignore it and revert to their own biases (see Part 5:
Enabling Systems Engineering). This is exacerbated if
the logical architecture model becomes an end in its own
right or disconnected from the main lifecycle activities.
This can occur either through the use of abstract
language or notations, levels of detail, time taken, or an
overly complex final architecture that does not match
the purpose for which it was created. If the language,
scope, and timeliness of the architecture are not
matched to the problem stakeholder or solution
providers, it is easier for them to overlook it. Key pitfalls
and good practices which can help to avoid problems
related to logical architecture models are described in
the next two sections.

Pitfalls

Some of the key pitfalls encountered in developing
logical architecture are provided in Table 1.

Table 1. Pitfalls with Logical Architecture Development.
(SEBoK Original)

Pitfall Description

Problem
Relevance

The logical architecture model should
relate back to the operational scenarios
produced by mission analysis.

Inputs for
Architecture
Model

The major input for architecture
definition activity involves the set of
system requirements and the instances
in which they do not address the right
level of architecture. The consequence
is that the architect allows the
requirements to fall to the side and
invents a solution with what he or she
understands through the input.

http://sandbox.sebokwiki.org/Enabling_Systems_Engineering

Decomposition
Too Deep

A common mistake made by many
beginners in architecture consists of
decomposing the functions too deeply
or having too many functions and
input/output flows in scenarios or in the
functional architecture model of the
current system block.

Not Considering
Inputs and
Outputs Together
with Functions

A common mistake is to consider only
the actions supported by functions and
decomposing them, while forgetting the
inputs and the outputs or considering
them too late. Inputs and outputs are
integral parts of a function.

Considering Static
Decomposition of
Functions Only

Static function decomposition is the
smallest functional architecture model
task and answers the basic question,
"How is this done?" The purpose of the
static decomposition is to facilitate the
management of or navigation through
the list of functions. The static
decomposition should be established
only when scenarios have been created
and the logical architecture is close to
complete.

Mixing
Governance,
Management, and
Operation

Governance (strategic monitoring),
management (tactical monitoring), and
basic operations are often mixed in
complex systems. Logical architecture
model should deal with behavioral
architecture model as well as with
temporal architecture model.

Proven Practices

Some proven practices gathered from the references are
provided in Table 2.

Table 2. Proven Practices with Logical Architecture
Development. (SEBoK Original)

Practice Description

Constitute
Scenarios of
Functions

Before constituting a decomposition tree of
functions, one must model the behavior of
the system, establish scenarios of functions,
and decompose functions as scenarios of
sub-functions.

Analysis and
Synthesis
Cycles

When facing a system that contains a large
number of functions, one should attempt to
synthesize functions into higher abstraction
levels of functions with the assistance of
criteria. Do not perform analysis only;
instead, conduct small cycles of analysis
(decomposition) and synthesis. The
technique of using scenarios includes this
design practice.

Alternate
Functional
and
Behavioral
Views

A function (action verb; e.g. "to move") and
its state of execution/operational mode (e.g.
"moving") are two similar and
complimentary views. Utilize this to consider
a behavioral view of the system that allows
for the transition from one operational mode
to another.

The Order to
Create a
Scenario of
Functions

When creating a scenario of functions, it is
more efficient to first establish the (control)
flow of functions, then to add input and
output flows, and finally to add triggers or
signals for synchronization.

References

Works Cited

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1995.
Design Patterns: Elements of Reusable Object-Oriented
Software. Boston, MA, USA: Addison-Wesley.

Faisandier, A. 2012. Systems Architecture and Design.
Belberaud, France: Sinergy'Com.

ISO/IEC. 2007.Systems Engineering – Application and
Management of the Systems Engineering Process.
Geneva, Switzerland: International Organization for
Standards (ISO)/International Electronical Commission
(IEC), ISO/IEC 26702:2007.

ISO/IEC/IEEE. 2011. Systems and Software Engineering
- Architecture Description. Geneva, Switzerland:
International Organization for Standardization
(ISO)/International Electrotechnical Commission
(IEC)/Institute of Electrical and Electronics Engineers
(IEEE), ISO/IEC/IEEE 42010.

Oliver, D., T. Kelliher, and J. Keegan. 1997. Engineering
Complex Systems with Models and Objects. New York,
NY, USA: McGraw-Hill.

OMG. 2010. OMG Systems Modeling Language
Specification, version 1.2, July 2010. Available at:

http://www.omg.org/technology/documents/spec_catalog.
htm.

Primary References

ANSI/IEEE. 2000. Recommended Practice for
Architectural Description for Software-Intensive
Systems. New York, NY, USA: American National
Standards Institute (ANSI)/Institute of Electrical and
Electronics Engineers (IEEE), ANSI/IEEE 1471-2000.

INCOSE. 2015. Systems Engineering Handbook - A
Guide for System Life Cycle Processes and Activities,
version 4.0. Hoboken, NJ, USA: John Wiley and Sons,
Inc, ISBN: 978-1-118-99940-0.

ISO/IEC. 2007. Systems Engineering – Application and
Management of the Systems Engineering Process.
Geneva, Switzerland: International Organization for
Standards (ISO)/International Electronical Commission
(IEC), ISO/IEC 26702:2007.

ISO/IEC/IEEE. 2015. Systems and Software Engineering
-- System Life Cycle Processes. Geneva, Switzerland:
International Organisation for Standardisation /
International Electrotechnical Commissions / Institute of
Electrical and Electronics Engineers. ISO/IEC/IEEE
15288:2015.

ISO/IEC/IEEE. 2011. Systems and Software Engineering
- Architecture Description. Geneva, Switzerland:
International Organization for Standardization
(ISO)/International Electrotechnical Commission
(IEC)/Institute of Electrical and Electronics Engineers
(IEEE), ISO/IEC/IEEE 42010.

Maier, M. and E. Rechtin. 2009. The Art of Systems
Architecting, 3rd ed. Boca Raton, FL, USA: CRC Press.

Additional References

Alexander, C., S. Ishikawa, M. Silverstein, M. Jacobson,
I. Fiksdahl-King, and S. Angel. 1977. A Pattern
Language: Towns, Buildings, Construction. New York,
NY, USA: Oxford University Press.

Buede, D.M. 2009. The Engineering Design of Systems:
Models and Methods. 2nd ed. Hoboken, NJ, USA: John
Wiley & Sons Inc.

Oliver, D., T. Kelliher, and J. Keegan. 1997. Engineering

http://www.omg.org/technology/documents/spec_catalog.htm
http://www.omg.org/technology/documents/spec_catalog.htm
http://sandbox.sebokwiki.org/IEEE_1471
http://sandbox.sebokwiki.org/IEEE_1471
http://sandbox.sebokwiki.org/IEEE_1471
http://sandbox.sebokwiki.org/IEEE_1471
http://sandbox.sebokwiki.org/INCOSE_Systems_Engineering_Handbook
http://sandbox.sebokwiki.org/ISO/IEC/IEEE_15288
http://sandbox.sebokwiki.org/ISO/IEC/IEEE_15288
http://sandbox.sebokwiki.org/ISO/IEC/IEEE_42010
http://sandbox.sebokwiki.org/ISO/IEC/IEEE_42010
http://sandbox.sebokwiki.org/ISO/IEC/IEEE_42010
http://sandbox.sebokwiki.org/The_Art_of_Systems_Architecting
http://sandbox.sebokwiki.org/The_Art_of_Systems_Architecting

Complex Systems with Models and Objects. New York,
NY, USA: McGraw-Hill.

The Open Group. 2011. TOGAF, version 9.1. Hogeweg,
The Netherlands: Van Haren Publishing. Accessed
A u g u s t 2 9 , 2 0 1 2 . A v a i l a b l e a t :
https://www2.opengroup.org/ogsys/jsp/publications/Publi
cationDetails.jsp?catalogno=g116.

Zachman, J. 2008. "John Zachman's Concise Definition of
The Zachman Framework™." Zachman International
Enterprise Architecture. Accessed August 29, 2012.
A v a i l a b l e a t :
http://www.zachman.com/about-the-zachman-framework.

< Previous Article | Parent Article | Next Article >
SEBoK v. 2.10, released 06 May 2024

Retrieved from
"https://sandbox.sebokwiki.org/index.php?title=Logical_Architecture
&oldid=71541"

This page was last edited on 2 May 2024, at 22:40.

https://www2.opengroup.org/ogsys/jsp/publications/PublicationDetails.jsp?catalogno=g116
https://www2.opengroup.org/ogsys/jsp/publications/PublicationDetails.jsp?catalogno=g116
http://www.zachman.com/about-the-zachman-framework
http://sandbox.sebokwiki.org/Functional_Architecture
http://sandbox.sebokwiki.org/System_Architecture_Design_Definition
http://sandbox.sebokwiki.org/Physical_Architecture
https://sandbox.sebokwiki.org/index.php?title=Logical_Architecture&oldid=71541
https://sandbox.sebokwiki.org/index.php?title=Logical_Architecture&oldid=71541

