
Model-Based Systems
Engineering (MBSE)
Model-Based Systems Engineering (MBSE)

The printable version is no longer supported and may
have rendering errors. Please update your browser
bookmarks and please use the default browser print
function instead.

Lead Author: Caitlyn Singam and Jeffrey Carter

Model-based Systems Engineering [MBSE] is a paradigm
that uses formalized representations of systems, known
as models, to support and facilitate the performance of
Systems Engineering [SE] tasks throughout a system’s
life cycle. MBSE is frequently contrasted with legacy
document-based approaches where systems engineering
captures system design information via multiple
independent documents in various non-standardized
formats. MBSE consolidates of system information in
system design models, which provide primary SE
artifacts. These system models, which are generally
expressed in a standardized modelling language such as
Systems Modeling Language [SysML®] express key
system information in a concise, consistent, correct, and
coherent format. When implemented properly, MBSE
models permit the standardized consolidation and
integration of system knowledge across engineering
disciplines and subsystems and streamline key systems
engineering tasks while also minimizing developmental
risk.

This article provides an overview of key concepts
underlying model-based approaches to systems
engineering and highlights the benefits of utilizing
MBSE on projects.

Contents
System Models

Definitions

http://sandbox.sebokwiki.org/Model-Based_Systems_Engineering_(MBSE)

Properties of System Models
Criteria for Effective MBSE Models

Modeling Languages
Architecture Frameworks
Process Frameworks
Benefits of MBSE

Digital Transformation
Digital Twins

MBSE versus DBSE
References

Works Cited
Primary References
Additional References

System Models
During the systems engineering process, a substantial
amount of information is collected, generated, and/or
maintained regarding the characteristics of the
system(s) of interest, composite elements, and
interacting entities/environments. MBSE utilizes models
as a means of aggregating and managing these disparate
pieces of information about a system in a centralized
repository that can serve as a ‘single source of truth’ and
technical baseline regarding a system of interest.

Definitions

Models are representations that are used to capture,
analyze, and/or communicate information about a system
or concept. They can vary in scope, purpose, and type,
and can be utilized both individually as stand-alone
entities as well as in concert with each other as part of
an integrated set (Wymore 1993).

Properties of System Models

A model can be described and classified with respect to
the following properties:

Scope: the range of relevance of a model. Models can
range from capturing the characteristics and
interactions of a system’s components (broad scope),
to only focusing on the form and function of a single

element in isolation (narrow scope).
Domain: the ‘lens’ through which the model views a
system. Models can be holistic in nature or can focus
on only highlighting information relevant to certain
domains. Domain-specific models generally are used
to highlight certain “perspectives” of a system,
whether from the lens of a particular application
sector (e.g., aerospace, biomedicine), discipline (e.g.,
electrical, mechanical, thermal), subsystem, or system
property (e.g., power, reliability, fault management).
Formality: the model’s level of adherence to
formalized standards for information expression.
Models can express information about systems with
varying degrees of precision. The most fundamental of
models, which simply express a basic representation
of a system in an unspecified format, do not convey
information with precision and are considered
informal. The most formal models comply with well-
developed, pre-defined standards (formalisms) for
content and organization, which collectively define
‘languages’ that enable consistent and precise
interpretations of models.
Abstraction: the degree to which a model suppresses
or excludes out-of-scope, unimportant, or irrelevant
details. Abstraction is a necessity with large and
complex systems where it is impractical to replicate
every aspect of a given system within a reasonable
time and resource expenditure margin.
Physical/conceptual: whether the model is concrete in
nature (i.e., a physical model) or fully conceptual (i.e.,
an abstract model).
Descriptive/analytical: whether a model details
qualitative aspects of a system such as requirements,
behaviors, or physical architecture (descriptive
model), provides a representation of quantitative
aspects of the system such as mass, reliability, power
consumption via mathematical relationships
(analytical model), or both (hybrid model).
Fidelity: the degree to which a model
comprehensively captures details about a system’s
characteristics, ranging from models which only
capture general information about a system to those
which seek to faithfully capture as much detail about
the system as possible.
Completeness: the extent to which a model captures

all relevant domain- information within its scope and
at its intended level of detail.
Integration: the extent to which a model interacts and
interfaces with other relevant models describing the
system of interest or other related/interacting entities.
Quality: the degree to which the model (not the
system it represents) meets the needs of the
individuals performing systems engineering activities.
A high-quality model should be readily usable, have
minimal ambiguity, and provide accurate, relevant
information needed to support tasks associated with
the design, development, operation, and/or
maintenance of a system.

Of these properties, formalization and abstraction are
generally the most frequently discussed in relation to
MBSE (Vogelsang et al. 2017) as they have the greatest
impact on whether a model can be effectively used as
part of an MBSE workflow.

Criteria for Effective MBSE Models

While a successful MBSE workflow can involve the use
of several different interconnected or standalone models
of various scopes and types based on user needs, the
main system model in an MBSE projects generally
should have the following characteristics:

A scope which matches the scope of the project (i.e.,1.
it should encompass the entire system of interest);
Representative of a holistic perspective from all2.
relevant domains.
Strict compliance with a previously established3.
standardized modeling language, whether that be an
existing language such as SysML® or a custom
formalism.
Fully abstracted, to only include relevant information4.
appropriate for the system of interest and its desired
use-case(s).
Conceptual in nature, to permit the capture of5.
intangible information (e.g., system requirements)
Containing a description of the system functional and6.
structural architecture at minimum and supplemented
by integrated analytical/quantitative property
descriptions as needed.
Demonstrating sufficient fidelity to capture relevant7.

system elements and behavior.
Fully complete given its scope.8.
Integrated with any necessary auxiliary models.9.
Sufficiently high-quality as to meet the needs of those10.
designing, developing, or otherwise working on the
system.

In terms of content, effective system models are
expected to capture key system information regarding
requirements, system functionality/behavior,
structure/form, properties, and interconnections
between system components.

Modeling Languages
Modeling languages are specifications which provide
standardized guidelines and structures for expressing
system information. These languages, which provide
both the structures or ‘syntax’ in which the information
can be expressed, as well as the ‘semantics’ that govern
the way in which the information should be interpreted,
can be selected based on user preferences and needs.
Different languages utilize different formats to express
information (e.g., visual or textual means), as well as
different paradigms (e.g., object-oriented, functional,
etc.) in order to group information. Visual languages are
generally preferred for modeling due to being readily
readable, and object-oriented modeling languages are
frequently used in systems engineering contexts since
they readily lend themselves to systems which can be
decomposed, or otherwise thought of, in terms of
objects.

SysML®, an extension of Unified Modeling Language
[UML] for systems engineering, is a one of the more
frequently used modeling languages for MBSE. It is an
graphical language that utilizes diagrams and tables in
order to express system information, and provides a
standard set of nine diagram types which can be used to
organize and express system information (Friedenthal,
Moore, and Steiner 2014). The collective diagrams (each
of which can be considered a model in its own right),
when interconnected, provide a means of representing
system structure, behavior, and requirements in
abstracted form. A number of other options have been
proposed as architecture description languages [ADLs]
for specifically modeling system architectures.
ISO/IEC/IEEE 42010 (Systems and software engineering
- Architecture description) specifies minimum
requirements for a language to qualify as an ADL (ISO

2011).

MBSE users have the option of using SysML®, a similar
graphical-language option like UML, a domain or
framework specific language, or potentially developing a
custom formalism for their team or organization (Bonnet
et al. 2016). It is possible to formalize textual documents
to create models, though doing so requires the
establishment of a domain dictionary in order to remove
the ambiguity inherent in diction choice, as well as the
use of rigid grammatical structures which may limit
readability.

Regardless of what modeling language is used for an
MBSE project, it is important that the language be
inherently scalable, standardized, readable, reusable,
and abstractable to enable the development of effective
MBSE models.

Architecture Frameworks
A second layer of structure that exists overtop a
modeling language is an architecture framework.
Architecture frameworks are used to organize the
information expressed via modeling language. Whereas a
modeling language provides the structure needed to
express multiple ‘views’ (diagrams) of system elements
and their interactions, architecture frameworks enable
the user to group those views based on the elements
they represent, and organize them in a way that allows
traceability, eases navigation through the model, and
aids in the identification of missing information (e.g., an
omitted element). Architecture frameworks are a specific
type of pattern that frequently get defined and
standardized for MBSE models. There are also
organization- and domain-specific design patterns that
can be employed in MBSE models to meet stakeholder
needs in more specific model use-cases.

Architecture frameworks and model design patterns play
an important role in enabling the re-use of MBSE models
(Wu et al. 2019), as certain architectural design patterns
may be frequently used across multiple projects even
when the specifications of the individual components
differ (e.g. building a house with the same structure but
different décor). By organizing a system model in a
sufficiently abstracted manner, it may be possible to
identify the points of difference between an old project
and a new one and make the appropriate changes to
element properties in the model without having to redo
the entire model development process.

Process Frameworks
The MBSE model development workflow can be
streamlined using pre-defined process frameworks,
which provide tailorable guidelines and patterns for
integrating MBSE into the generic systems engineering
process. While process frameworks are typically defined
on an organizational level, they generally all exhibit
some form of configuration management process, access
guidelines, practices for updating the model, and means
of integrating the MBSE model into all or nearly all
systems engineering lifecycle activities. The benefits of
MBSE usage are limited when the system model falls out
of date or otherwise becomes inaccurate, so regular
model updates are a minimum requirement for MBSE
process frameworks.

For smaller projects, the MBSE process framework may
be as simple as utilizing the version control features that
come included as part of many collaborative modeling
software platforms and integrating model usage and
periodic updates as checkpoints in the systems
engineering process. More complex projects can
formalize MBSE process frameworks in a manner that
can be verified against configuration management and
systems engineering management plans (Fisher et al.
2014).

Benefits of MBSE
The MBSE workflow and the creation of a centralized
system model emphasizes a holistic, standards-based
approach to systems engineering (Madni and Sievers
2018). Since the creation of a system model requires
reconciliation of information from multiple domains and
subsystems, inconsistencies and defects are readily
identifiable during the modeling process (Carroll and
Malins 2016) and can be addressed or eliminated earlier
on in the system lifecycle process than would otherwise
be done in a document-based workflow. Similarly, the
centralization and standardization of information
ensures a reduction in miscommunications and other
development risks since all project team members are
using the same source of information for reference.
Format standardization also makes it easier to search for
and extract information, compared to a document-based
workflow where information is stored across multiple
documents in different formats.

More broadly, MBSE provides a better means of
managing complexity than document-based using

formalized structures and abstraction. Cross-referencing
within MBSE models makes it possible to begin design
verification, requirements validation, and systems
assurance earlier on in the system lifecycle, and to
continue assessing system design quality throughout a
project at minimum cost. Furthermore, models can be
reused and adapted for similar systems, which enables
accelerated system development with minimal risk.

Digital Transformation

While DBSE has traditionally been the paradigm of
preference for artifact generation and for supporting
systems engineering efforts in the pre-digital age, digital
transformation of the generic systems engineering
workflow in recent years has catalyzed the widespread
adoption of MBSE and broader model-based [MBx]
approaches. Digital environments and software tools
have made it easier and faster to generate, maintain, and
use system models, especially in a collaborative setting
(Ma et al. 2022). If implemented appropriately, digital
MBSE models can be used to programmatically identify
inconsistencies, enable interactive simulations of system
behavior, simultaneously propagate changes across an
entire project (rather than updating artifacts one-by-
one), automatically generate document-based artifacts,
and more. The advent of new software for supporting
and automating systems engineering tasks has opened
additional avenues for expanding the capabilities of
system models, and for increasing the efficiency with
which systems engineering tasks can be performed.

Digital Twins

When MBSE models of physical systems are built with
sufficient completeness and fidelity, it is possible for
them to function as ‘digital twins’ of the systems they
represent. Digital twins provide a means of accurately
representing a system’s form and function throughout
the system’s lifecycle, all within a digital environment.
Creating such digital twins provides number of
advantages, including allowing individuals to perform
testing, analysis, and optimization of systems in a virtual
environment at no risk to the actual system of interest
and often at a greatly reduced cost/burden (Schluse,
Atorf, and Rossmann 2017). Digital twins also make it
possible to represent the behavior of systems under
conditions which would be impractical or impossible to
induce under experimental conditions, thereby making it
possible to obtain information not obtainable via study of

the original physical system.

MBSE versus DBSE
Although MBSE and document-based approaches are
usually presented as alternatives to each other, it is
possible to use MBSE and document-based in
conjunction with each other on the same project. In work
environments where document-based is the norm,
stakeholders may expect or require the submission of
textual document artifacts, or there may be issues with a
lack of familiarity with any modeling languages (Kim,
Wagner, and Jimenez 2019); in such instances, it may be
necessary to utilize a hybrid approach where documents
are generated from the design model as static
representations of the system for project milestones.

References

Works Cited

Bonnet, Stéphane, Jean-Luc Voirin, Daniel Exertier, and
Véronique Normand. 2016. “Not (Strictly) Relying on
SysML for MBSE: Language, Tooling and Development
Perspectives: The Arcadia/Capella Rationale.” In 2016
Annual IEEE Systems Conference (SysCon), 1–6.
https://doi.org/10.1109/SYSCON.2016.7490559.

Carroll, Edward Ralph, and Robert Joseph Malins. 2016.
“Systematic Literature Review: How Is Model-Based
Systems Engineering Justified?.” SAND2016-2607,
1561164. https://doi.org/10.2172/1561164.

Fisher, Amit, Mike Nolan, Sanford Friedenthal, Michael
Loeffler, Mark Sampson, Manas Bajaj, Lonnie VanZandt,
Krista Hovey, John Palmer, and Laura Hart. 2014. “3.1.1
Model Lifecycle Management for MBSE.” INCOSE
Interna t iona l Sympos ium 24 (1) : 207–29 .
https://doi.org/10.1002/j.2334-5837.2014.tb03145.x.

Friedenthal, Sanford, Alan Moore, and Rick Steiner.
2014. A Practical Guide to SysML: The Systems
Modeling Language. Morgan Kaufmann. ISO. 2011.
“ISO/IEC/IEEE 42010.” Geneva, Switzerland:
International Organization for Standardization (ISO).
https://www.iso.org/cms/render/live/en/sites/isoorg/conte
nts/data/standard/05/05/50508.html.

Kim, So Young, David Wagner, and Alejandro Jimenez.
2019. “Challenges in Applying Model-Based Systems

https://doi.org/10.1109/SYSCON.2016.7490559
https://doi.org/10.2172/1561164
https://doi.org/10.1002/j.2334-5837.2014.tb03145.x
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/05/50508.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/05/50508.html

Engineering: Human-Centered Design Perspective,”
September. https://trs.jpl.nasa.gov/handle/2014/51368.

Ma, Junda, Guoxin Wang, Jinzhi Lu, Hans Vangheluwe,
Dimitris Kiritsis, and Yan Yan. 2022. “Systematic
Literature Review of MBSE Tool-Chains.” Applied
S c i e n c e s 1 2 (7) : 3 4 3 1 .
https://doi.org/10.3390/app12073431.

Madni, Azad M., and Michael Sievers. 2018. “Model-
Based Systems Engineering: Motivation, Current Status,
and Research Opportunities.” Systems Engineering 21
(3): 172–90. https://doi.org/10.1002/sys.21438.

Schluse, Michael, Linus Atorf, and Juergen Rossmann.
2017. “Experimentable Digital Twins for Model-Based
Systems Engineering and Simulation-Based
Development.” In 2017 Annual IEEE International
S y s t e m s C o n f e r e n c e (S y s C o n) , 1 – 8 .
https://doi.org/10.1109/SYSCON.2017.7934796.

Vogelsang, Andreas, Tiago Amorim, Florian Pudlitz,
Peter Gersing, and Jan Philipps. 2017. “Should I Stay or
Should I Go? On Forces That Drive and Prevent MBSE
Adoption in the Embedded Systems Industry.” In
Product-Focused Software Process Improvement, edited
by Michael Felderer, Daniel Méndez Fernández, Burak
Turhan, Marcos Kalinowski, Federica Sarro, and Dietmar
Winkler, 182–98. Cham: Springer International
P u b l i s h i n g .
https://doi.org/10.1007/978-3-319-69926-4_14.

Wu, Quentin, David Gouyon, Sophie Boudau, and Éric
Levrat. 2019. “Capitalization and Reuse with Patterns in
a Model-Based Systems Engineering (MBSE)
Framework.” In 2019 International Symposium on
S y s t e m s E n g i n e e r i n g (I S S E) , 1 – 8 .
https://doi.org/10.1109/ISSE46696.2019.8984571.

Wymore, A. Wayne. 1993. Model-Based Systems
Engineering: An Introduction to the Mathematical
Theory of Discrete Systems and to the Tricotyledon
Theory of System Design. Boca Raton: CRC Press.

Primary References

Estefan, J. 2008. A Survey of Model-Based Systems
Engineering (MBSE) Methodologies, Rev. B. San Diego,
CA, USA: International Council on Systems Engineering.
I N C O S E - T D - 2 0 0 7 - 0 0 3 - 0 2 . A v a i l a b l e a t :
http://www.incose.org/ProductsPubs/pdf/techdata/MTTC/
MBSE_Methodology_Survey_2008-0610_RevB-JAE2.pdf.

https://trs.jpl.nasa.gov/handle/2014/51368
https://doi.org/10.3390/app12073431
https://doi.org/10.1002/sys.21438
https://doi.org/10.1109/SYSCON.2017.7934796
https://doi.org/10.1007/978-3-319-69926-4_14
https://doi.org/10.1109/ISSE46696.2019.8984571
http://www.incose.org/ProductsPubs/pdf/techdata/MTTC/MBSE_Methodology_Survey_2008-0610_RevB-JAE2.pdf
http://www.incose.org/ProductsPubs/pdf/techdata/MTTC/MBSE_Methodology_Survey_2008-0610_RevB-JAE2.pdf

INCOSE. 2021. Systems Engineering Vision 2035.
Torrance, CA, USA: International Council on Systems
Engineering.

OMG. "MBSE Wiki." Object Management Group (OMG).
Available at: http://www.omgwiki.org/MBSE/doku.php.
Accessed 05 April 2022.

Additional References

Downs, E., P. Clare, and I. Coe. 1992. Structured
Systems Analysis and Design Method: Application and
Context. Hertfordshire, UK: Prentice-Hall International.

INCOSE. 2007. Systems Engineering Vision 2020.
Seattle, WA, USA: International Council on Systems
Engineering. September 2007. INCOSE-TP-2004-004-02.

Kossiakoff, A. and W. Sweet. 2003. "Chapter 14," in
Systems Engineering Principles and Practice. New York,
NY, USA: Wiley and Sons.

NDIA. 2011. Final Report of the Model Based
Engineering (MBE) Subcommittee. Arlington, VA, USA:
National Defense Industrial Association. Available at:
http://www.ndia.org/Divisions/Divisions/SystemsEnginee
ring/Documents/Committees/M_S%20Committee/Reports
/MBE_Final_Report_Document_(2011-04-22)_Marked_Fin
al_Draft.pdf

Oliver, D., T. Kelliber, and J. Keegan. 1997. Engineering
Complex Systems with Models and Objects. New York,
NY, USA: McGraw-Hill.

< Previous Article | Parent Article | Next Article >
SEBoK v. 2.10, released 06 May 2024

Retrieved from
"https://sandbox.sebokwiki.org/index.php?title=Model-Based_System
s_Engineering_(MBSE)&oldid=71378"

This page was last edited on 2 May 2024, at 22:20.

http://www.omgwiki.org/MBSE/doku.php
http://www.ndia.org/Divisions/Divisions/SystemsEngineering/Documents/Committees/M_S%20Committee/Reports/MBE_Final_Report_Document_(2011-04-22)_Marked_Final_Draft.pdf
http://www.ndia.org/Divisions/Divisions/SystemsEngineering/Documents/Committees/M_S%20Committee/Reports/MBE_Final_Report_Document_(2011-04-22)_Marked_Final_Draft.pdf
http://www.ndia.org/Divisions/Divisions/SystemsEngineering/Documents/Committees/M_S%20Committee/Reports/MBE_Final_Report_Document_(2011-04-22)_Marked_Final_Draft.pdf
http://www.ndia.org/Divisions/Divisions/SystemsEngineering/Documents/Committees/M_S%20Committee/Reports/MBE_Final_Report_Document_(2011-04-22)_Marked_Final_Draft.pdf
http://sandbox.sebokwiki.org/Systems_Engineering_STEM_Overview
http://sandbox.sebokwiki.org/Systems_Engineering_and_Management
http://sandbox.sebokwiki.org/System_Life_Cycle_Approaches
https://sandbox.sebokwiki.org/index.php?title=Model-Based_Systems_Engineering_(MBSE)&oldid=71378
https://sandbox.sebokwiki.org/index.php?title=Model-Based_Systems_Engineering_(MBSE)&oldid=71378

