
Process Integration
Process Integration

The printable version is no longer supported and may
have rendering errors. Please update your browser
bookmarks and please use the default browser print
function instead.

Lead Authors: Kevin Forsberg, Bud Lawson

When performing systems engineering activities, it is
important to consider the mutual relationship between
processes and the desired system. The type of system
(see Types of Systems) being produced will affect the
needed processes, as indicated in system life cycle
process drivers and choices. This may cause the tailoring
of defined processes as described in application of
systems engineering standards.

Contents
Process and Product Models
Stage Execution Order
Allocating and Meeting Requirements - Integration of
Process and Product Models
References

Works Cited
Primary References
Additional References

Process and Product Models
Figure 1 of life cycle models introduced the perspective
of viewing stage work products provided by process
execution as versions of a system-of-interest (SoI) at
various life stages. The fundamental changes that take
place during the life cycle of any man-made system
include definition, production, and utilization. When
building upon these, it is useful to consider the structure

http://sandbox.sebokwiki.org/Process_Integration
http://sandbox.sebokwiki.org/Types_of_Systems
http://sandbox.sebokwiki.org/System_Life_Cycle_Process_Drivers_and_Choices
http://sandbox.sebokwiki.org/System_Life_Cycle_Process_Drivers_and_Choices
http://sandbox.sebokwiki.org/Application_of_Systems_Engineering_Standards
http://sandbox.sebokwiki.org/Application_of_Systems_Engineering_Standards
http://sandbox.sebokwiki.org/Life_Cycle_Models

of a generic process and product life cycle stage model
as portrayed in Figure 1 below.

Figure 1. Generic (T) Stage Structure of System Life Cycle
(Lawson 2010). Reprinted with permission of Harold "Bud"
Lawson. All other rights are reserved by the copyright owner.

The (T) model indicates that a definition stage precedes
a production stage where the implementation
(acquisition, provisioning, or development) of two or
more system elements has been accomplished. The
system elements are integrated according to defined
relationships into the SoI. Thus, both the process and
product aspects are portrayed. The implementation and
integration processes are followed in providing the
primary stage results—namely, in assembled system
product or service instances. However, as noted in life
cycle models, the definition of the SoI when provided in
a development stage can also be the result of first
versions of the system. For example, a prototype, which
may be viewed as a form of production or pre-production
stage. Following the production stage is a utilization
stage. Further relevant stages can include support and
retirement. Note that this model also displays the
important distinction between definition versus
implementation and integration.

According to ISO/IEC/IEEE 15288 (2015), this structure
is generic for any type of man-made SoI to undergo life
cycle management. The production stage thus becomes
the focal point of the (T) model at which system elements
are implemented and integrated into system product or
service instances based upon the definitions. For defined
physical systems, this is the point at which product
instances are manufactured and assembled (singularly
or mass-produced). For non-physical systems, the
implementation and integration processes are used in

http://sandbox.sebokwiki.org/File:Generic_(T)_Stage_Structure_of_System_Life_Cycle_Models_(Lawson_2010,_Figure_6-2).png
http://sandbox.sebokwiki.org/Life_Cycle_Models
http://sandbox.sebokwiki.org/Life_Cycle_Models
http://sandbox.sebokwiki.org/ISO/IEC/IEEE_15288

service preparation (establishment) prior to being
instantiated to provide a service. For software systems,
this is the point at which builds that combine software
elements into versions, releases, or some other form of
managed software product are produced.

Using recursive decomposition, the implementation of
each system element can involve the invocation of the
standard again at the next lowest level, thus treating the
system element as a SoI in its own right. A new life cycle
structure is then utilized for the lower level SoIs.

This is illustrated in the Dual Vee model (Figures 2a and
2b). The Dual Vee model is a three-dimensional system
development model that integrates product and process
in the creation of the system and component
architectures. It emphasizes

concurrent opportunity and risk management;
user in-process validation;
integration, verification, and validation planning; and
verification problem resolution.

When decomposition terminates according to the
practical need and risk-benefit analysis, system elements
are then implemented (acquired, provisioned, or
developed) according to the type of element involved.

Figure 2a. The Dual Vee Model (2a) (Forsberg, Mooz,
Cotterman 2005). Reprinted with permission of John Wiley & Sons

Inc. All other rights are reserved by the copyright owner.

http://sandbox.sebokwiki.org/File:@@BKCASE_Wiki_Section_2.5_Fig_2a_PDF_110820.png

Figure 2b. The Dual Vee Model (2b) (Forsberg, Mooz,
Cotterman 2005). Reprinted with permission of John Wiley & Sons

Inc. All other rights are reserved by the copyright owner.

A practical aspect that can impact the process and
product aspect is the decision to use off-the-shelf
elements in commercial-off-the-shelf (COTS) form. In this
case, further decomposition of the element is not
necessary. The use of COTS elements (and their
internally created neighbor or non-development item
(NDI)) has become widespread, and they have proven
their value. However, developers must make sure that
the COTS product is appropriate for their environment.

A known flaw which occurs infrequently in normal use of
the product in its intended environment may be benign
and easily dealt with. In a new situation, it could have
dramatic adverse consequences, such as those that
occurred on the USS Yorktown Cruiser in 1998 (Wired
News Contributors 1998). The customer mandated that
Windows NT be used as the primary operating system
for the ship. A divide by zero fault caused the operating
system to fail, and the ship was dead in the water. It had
to be towed back to port on three occasions.

Spiral models concurrently engineer not only process
and product models, but also property and success
models. Figure 3 shows how these models provide
checks and balances, both at milestone reviews and as
individual model choices are made. Methods and tools
supporting this concurrent engineering are provided in
“When Models Collide: Lessons from Software System
Analysis” (Boehm and Port 1999), “Avoiding the
Software Model-Clash Spiderweb” (Boehm, Port, and Al-
Said 2000), and “Detecting Model Clashes During
Software Systems Development” (Al-Said 2003).

http://sandbox.sebokwiki.org/File:@@BKCASE_Wiki_Section_2.5_Fig_2b_PDF_110820.png

Figure 3. Spiral Model Support for Process Models, Product
Models, Success Models, Property Models (Boehm and Port
1999). Reprinted with permission of © Copyright IEEE – All rights

reserved. All other rights are reserved by the copyright owner.

For software systems, entry into the production stages is
the point at which builds that combine software
elements (code modules) into versions, releases, or some
other form of managed software product are created.
Thus, the major difference between systems in general
and software systems is the slight variant of the generic
model as presented in Figure 4.

Figure 4. T-Model for Software System (Lawson 2010).
Reprinted with permission of Harold "Bud" Lawson. All other rights

are reserved by the copyright owner.

Stage Execution Order
A sequential execution of life cycle stages is the most
straightforward. As presented in Vee Life Cycle Model
and Incremental Life Cycle Model, variants of the Vee
model and the spiral model provide non-sequential
models when practical considerations require a non-
linear execution of life cycle stages. Building upon these
two models, it is important to note that various types of

http://sandbox.sebokwiki.org/File:Figure_3._Spiral_Model_support_for_Process_Models,_Product_Models....png
http://sandbox.sebokwiki.org/File:T-Model_for_Software_System_(Lawson_2010,_Figure_6-3).png
http://sandbox.sebokwiki.org/Vee_Life_Cycle_Model
http://sandbox.sebokwiki.org/Incremental_Life_Cycle_Model

complex systems require that the stages of the life cycle
model be revisited as insight (knowledge) is gained, as
well as when stakeholder requirements change. The
iterations may involve necessary changes in the
processes and in the product or service system. Thus,
within the context of the (T) stage model, various
orderings of stage execution - reflecting forms of non-
sequential stage ordering - can be conveniently
described, as portrayed in Figure 5.

Figure 5. Iteration Through Life Cycle Stages (Lawson
2010). Reprinted with permission of Harold "Bud" Lawson. All other

rights are reserved by the copyright owner.

Each pattern of stage execution involves iteration of the
previous stages, perhaps with altered requirements for
the processes or the system. The heavy lines in Figure 5
denote the demarcation of the revisited end points.
Three are iterative forms, for which several variants can
be extracted:

Iterative development is quite frequently deployed1.
in order to assess stakeholder requirements, analyze
the requirements, and develop a viable architectural
design. Thus, it is typical that the concept stage may
be revisited during the development stage. For
systems where products are based upon physical
structures (electronics, mechanics, chemicals, and so
on), iteration after production has begun can involve
significant costs and schedule delays. It is, therefore,
important to get it "right" before going to production.
The early stages are thus used to build confidence
(verify and validate) that the solution works properly

http://sandbox.sebokwiki.org/File:Iteration_through_Life_Cycle_Stages_(Lawson_2010,_Figure_6-4).png

and will meet the needs of the stakeholders. Naturally,
such an approach could be used for software and
human activity systems as well; however, due to their
soft nature, it can be useful to go further by
experimenting and evaluating various configurations
of the system.
Iterative development and implementation2.
involves producing (defining, implementing, and
integrating) various versions of the system, evaluating
how well they meet stakeholder requirements,
perhaps in the context of changing requirements, and
then revisiting the concept and/or development
stages. Such iterations are typical within software
system development, where the cost of production is
not as significant as for defined physical systems. A
variant of this approach is the spiral model, where
successive iterations fill in more detail (Boehm and
May 1998). The use of this approach requires careful
attention to issues related to baseline and
configuration management. In this approach,
significant verification (testing) should be performed
on software systems in order to build confidence that
the system delivered will meet stakeholder
requirements.
Incremental or progressive acquisition involves3.
releasing systems in the form of products and/or
services to the consumers. This approach is
appropriate when structural and capability (functions)
changes are anticipated in a controlled manner after
deployment. The use of this approach can be due to
not knowing all of the requirements at the beginning,
which leads to progressive acquisition/deployment, or
due to a decision to handle the complexity of the
system and its utilization in increments—namely,
incremental acquisition. These approaches are vital
for complex systems in which software is a significant
system element. Each increment involves revisiting
the definition and production stages. The utilization of
these approaches must be based upon well-defined,
agreed relationships between the supplying and
acquiring enterprises. In fact, the iteration associated
with each resulting product and/or service instance
may well be viewed as a joint project, with actor roles
being provided by both enterprises.

In all of the approaches it is wise to use modeling and
simulation techniques and related tools to assist in

understanding the effect of changes made in the
complex systems being life cycle managed. These
techniques are typically deployed in the earlier stages;
however, they can be used in gaining insight into the
potential problems and opportunities associated with the
latter stages of utilization and maintenance (for example,
in understanding the required logistics and help-desk
aspects).

Allocating and Meeting
Requirements - Integration of
Process and Product Models
Regardless of the order in which life cycle stages are
executed, stakeholder requirements for the system,
including changed requirements in each iteration, must
be allocated into appropriate activities of the processes
used in projects for various stages as well as to the
properties of the elements of the product system or
service system and their defined relationships. This
distribution was illustrated in the fourth variant of
Lawson’s T-model as presented in Incremental Life Cycle
Model and Vee Life Cycle Model.

Ideally, the project management team should implement
proven processes that will integrate the technical
process models with the project management product
models to manage any of the processes discussed
earlier, including incremental and evolutionary
development. The processes shown are the project
management flow, starting with the beginning of the
development phase (Forsberg, Mooz, and Cotterman
2005, 201).

http://sandbox.sebokwiki.org/Incremental_Life_Cycle_Model
http://sandbox.sebokwiki.org/Incremental_Life_Cycle_Model
http://sandbox.sebokwiki.org/Vee_Life_Cycle_Model

Figure 6a. New Product Planning Process – Getting Started
(Forsberg, Mooz, and Cotterman 2005). Reprinted with

permission of John Wiley & Sons Inc. All other rights are reserved
by the copyright owner.

Figure 6b. New Product Planning Process Solving the
Problem (Forsberg, Mooz, and Cotterman 2005). Reprinted

with permission of John Wiley & Sons Inc. All other rights are
reserved by the copyright owner.

http://sandbox.sebokwiki.org/File:@@BKCASE_Sect_2.5_Fig_6A.png
http://sandbox.sebokwiki.org/File:@@BKCASE_Sect_2.5_Fig_6B.png

Figure 6c. New Product Planning Process – Getting
Commitment (Forsberg, Mooz, and Cotterman 2005).

Reprinted with permission of John Wiley & Sons Inc. All other rights
are reserved by the copyright owner.

References

Works Cited

Boehm, B. and W. May. 1988. "A Spiral Model of
Software Development and Enhancement." IEEE
Computer 21(5): 61-72.

Boehm, B. and D. Port. 1999. "When Models Collide:
Lessons From Software System Analysis." IT
Professional 1(1): 49-56.

Boehm, B., J. Lane, S. Koolmanojwong, and R. Turner
(forthcoming). Embracing the Spiral Model: Creating
Successful Systems with the Incremental Commitment
Spiral Model. New York, NY, USA: Addison Wesley.

Forsberg, K., H. Mooz, and H. Cotterman. 2005.
Visualizing Project Management. 3rd ed. New York, NY,
USA: J. Wiley & Sons.

ISO/IEC/IEEE. 2015.Systems and Software Engineering--
System Life Cycle Processes. Geneva, Switzerland:
International Organisation for Standardisation /
I n t e r n a t i o n a l E l e c t r o t e c h n i c a l
Commissions.ISO/IEC/IEEE 15288:2015

Lawson, H. 2010. A Journey Through the Systems
Landscape. London, UK: College Publications.

http://sandbox.sebokwiki.org/File:QQBKCASE_Sect_2.5_Fig_6C.png
http://sandbox.sebokwiki.org/ISO/IEC/IEEE_15288
http://sandbox.sebokwiki.org/ISO/IEC/IEEE_15288

Wired News Contributors. 2011. “Sunk by Windows NT,”
Wired News, last modified July 24, 1998. Accessed on
S e p t e m b e r 1 1 , 2 0 1 1 . A v a i l a b l e a t
http://www.wired.com/science/discoveries/news/1998/07
/13987.

Primary References

Boehm, B. and W. May. 1988. “A Spiral Model of
Software Development and Enhancement.” IEEE
Computer. 21(5): 61-72.

Forsberg, K., H. Mooz, and H. Cotterman. 2005.
Visualizing Project Management, 3rd ed. New York, NY,
USA: John Wiley & Sons.

Lawson, H. 2010. A Journey Through the Systems
Landscape. London, UK: College Publications.

Additional References

Al-Said, M. 2003. "Detecting Model Clashes During
Software Systems Development." PhD Diss. Department
of Computer Science, University of Southern California,
December 2003.

Boehm, B., J. Lane, S. Koolmanojwong, and R. Turner.
(forthcoming). Embracing the Spiral Model: Creating
Successful Systems with the Incremental Commitment
Spiral Model. New York, NY, USA: Addison Wesley.

Boehm, B. and D. Port. 1999. "Escaping the Software Tar
Pit: Model Clashes and How to Avoid Them." ACM
Software Engineering Notes. (January, 1999): p. 36-48.

Boehm, B. and D. Port. 1999. "When Models Collide:
Lessons From Software System Analysis." IT
Professional. 1(1): 49-56.

Boehm, B., D. Port, and M. Al-Said. 2000. "Avoiding the
Software Model-Clash Spiderweb." IEEE Computer.
33(11): 120-122.

Lawson, H. and M. Persson. 2010. “Portraying Aspects of
System Life Cycle Models.” Proceedings of the European
Systems Engineering Conference (EuSEC). 23-26 May
2010. Stockholm, Sweden.

< Previous Article | Parent Article | Next Article >
SEBoK v. 2.10, released 06 May 2024

http://www.wired.com/science/discoveries/news/1998/07/13987
http://www.wired.com/science/discoveries/news/1998/07/13987
http://sandbox.sebokwiki.org/A_Spiral_Model_of_Software_Development_and_Enhancement
http://sandbox.sebokwiki.org/A_Spiral_Model_of_Software_Development_and_Enhancement
http://sandbox.sebokwiki.org/Visualizing_Project_Management
http://sandbox.sebokwiki.org/A_Journey_Through_the_Systems_Landscape
http://sandbox.sebokwiki.org/A_Journey_Through_the_Systems_Landscape
http://sandbox.sebokwiki.org/Agile_Systems_Engineering
http://sandbox.sebokwiki.org/System_Life_Cycle_Models
http://sandbox.sebokwiki.org/Lean_Engineering

Retrieved from
"https://sandbox.sebokwiki.org/index.php?title=Process_Integration&
oldid=71421"

This page was last edited on 2 May 2024, at 22:24.

https://sandbox.sebokwiki.org/index.php?title=Process_Integration&oldid=71421
https://sandbox.sebokwiki.org/index.php?title=Process_Integration&oldid=71421

