
Incremental Life Cycle
Model
Systems Engineering and Project Management > call center > Incremental
Life Cycle Model

The printable version is no longer supported and may
have rendering errors. Please update your browser
bookmarks and please use the default browser print
function instead.

Contributing Author: Kevin Forsberg

There are a large number of life cycle process models.
As discussed in the System Life Cycle Process Drivers
and Choices article pre-specified single-step is like
traditional or waterfall with fixed requirements; pre-
specified, multi-step will develop an early initial
operational capability and then follow that by several
pre-planned product improvement. The next 3 are
incremental and evolutionary and range from rapid
fielding to maturing technology to emergent
development. We have grouped these models into three
major categories: (1) primarily pre-specified single-step
or multistep, also known as traditional or sequential
processes; (2) evolutionary sequential (or the Vee
model); and (3) evolutionary opportunistic and
evolutionary concurrent (or incremental agile). The
concurrent processes are known by many names: the
agile unified process (formerly the Rational Unified
Process), the spiral models and include some that are
primarily interpersonal and unconstrained processes
(e.g., agile development, Scrum, extreme programming
(XP), dynamic system development methods, and
innovation-based processes).

This article discusses evolutionary opportunistic and
evolutionary concurrent, the third category listed above.
While there are a number of different models describing
the project environment, the spiral model and the Vee
Model have become the dominant approaches to
visualizing the development process. Both the Vee and
the spiral are useful models that emphasize different
aspects of a system life cycle.

General implications of using incremental models for

http://sandbox.sebokwiki.org/Systems_Engineering_and_Project_Management
http://sandbox.sebokwiki.org/Call_Center_(glossary)
http://sandbox.sebokwiki.org/Incremental_Life_Cycle_Model
http://sandbox.sebokwiki.org/Incremental_Life_Cycle_Model
http://sandbox.sebokwiki.org/Life_Cycle_Models
http://sandbox.sebokwiki.org/System_Life_Cycle_Process_Drivers_and_Choices
http://sandbox.sebokwiki.org/System_Life_Cycle_Process_Drivers_and_Choices

system design and development are discussed below.
For a more specific understanding of how this life cycle
model impacts systems engineering activities, please see
the other knowledge areas (KAs) in Part 3. This article is
focused on the use of incremental life cycle process
models in systems engineering. (See Systems
Engineering and Software Engineering in Part 6 for
more information on life cycle implications in software
engineering.)

Contents
Evolutionary and Incremental Development

Overview of the Evolutionary Approach
Overview of the Incremental Approach

Iterative Software Development Process Models
Overview of Iterative-Development Process Models

The Incremental-Build Model
The Role of Prototyping in Software Development
Life Cycle Sustainment of Software
Retirement of Software

Primarily Evolutionary and Concurrent Processes: The
Incremental Commitment Spiral Model

Overview of the Incremental Commitment Spiral
Model
Other Views of the Incremental Commitment Spiral
Model
Underlying ICSM Principles
Model Experience to Date

Agile and Lean Processes
Scrum

Architected Agile Methods
Agile Practices and Principles
Lean Systems Engineering and Development

Origins
Principles

References
Works Cited
Primary References
Additional References

http://sandbox.sebokwiki.org/Systems_Engineering_and_Software_Engineering
http://sandbox.sebokwiki.org/Systems_Engineering_and_Software_Engineering
http://sandbox.sebokwiki.org/Related_Disciplines

Evolutionary and Incremental
Development

Overview of the Evolutionary Approach

A specific methodology called evolutionary development
is common in research and development (R&D)
environments in both the government and commercial
sector. Figure 1 illustrates this approach, which was
used in the evolution of the high temperature tiles for
the NASA Space Shuttle (Forsberg 1995). In the
evolutionary approach, the end state of each phase of
development is unknown, though the goal is for each
phase to result in some sort of useful product.

Figure 1. Evolutionary Generic Model (Forsberg, Mooz,
Cotterman 2005). Reprinted with permission of John Wiley &
Sons, Inc. All other rights are reserved by the copyright owner.

The real-world development environment is complex and
difficult to map because many different project cycles
are underway simultaneously.

Overview of the Incremental Approach

Incremental development methods have been in use
since the 1960s (and perhaps earlier). They allow a
project to provide an initial capability followed by
successive deliveries to reach the desired system-of-
interest (SoI).

The incremental approach, shown in Figure 2, is used
when:

rapid exploration and implementation of part of the
system is desired;
the requirements are unclear from the beginning;

http://sandbox.sebokwiki.org/File:Evolutionary_Generic_Model.PNG

funding is constrained;
the customer wishes to hold the SoI open to the
possibility of inserting new technology at a later time;
and/or
experimentation is required to develop successive
prototype (glossary) versions.

The attributes that distinguish incremental from the
single-pass, plan-driven approach are velocity and
adaptability.

Figure 2. Incremental Development with Multiple Deliveries
(Forsberg, Mooz, and Cotterman 2005). Reprinted with

permission of John Wiley & Sons Inc. All other rights are reserved
by the copyright owner.

Incremental development may also be “plan-driven” in
nature if the requirements are known early on in the life
cycle. The development of the functionality is performed
incrementally to allow for insertion of the latest
technology or for potential changes in needs or
requirements. Incremental development also imposes
constraints. The example shown in Figure 3 uses the
increments to develop high-risk subsystems (or
components) early, but the system cannot function until
all increments are complete.

http://sandbox.sebokwiki.org/File:KF_IncrementalDevelopment_Multiple.png

Figure 3. Incremental Development with a Single Delivery
(Forsberg, Mooz, Cotterman 2005). Reprinted with permission

of John Wiley & Sons Inc. All other rights are reserved by the
copyright owner.

Advise this figure and section be moved to the Case
Study section of the SEBoK.--- Figure 4 shows the
applied research era for the development of the space
shuttle Orbiter and illustrates multi-levels of
simultaneous development, trade-studies, and ultimately,
implementation.

Figure 4. Evolution of Components and Orbiter Subsystems
(including space shuttle tiles) During Creation of a Large

"Single-Pass" Project (Forsberg 1995). Reprinted with
permission of Kevin Forsberg. All other rights are reserved by the

copyright owner.

Advise this information below be moved to Part 6, unless

http://sandbox.sebokwiki.org/File:Incremental_Development_with_a_single_delivery.PNG
http://sandbox.sebokwiki.org/File:KF_EvolutionComponents_Orbiter.png

it is redundant or out of date.---

Iterative Software Development
Process Models
Software is a flexible and malleable medium which
facilitates iterative analysis, design, construction,
verification, and validation to a greater degree than is
usually possible for the purely physical components of a
system. Each repetition of an iterative development
model adds material (code) to the growing software
base; the expanded code base is tested, reworked as
necessary, and demonstrated to satisfy the requirements
for the baseline.

Process models for software development support
iterative development on cycles of various lengths. Table
1 lists three iterative software development models
which are presented in more detail below, as well as the
aspects of software development that are emphasized by
those models.

Table 1. Primary Emphases of Three Iterative Software
Development Models. (SEBoK Original)

Iterative Model Emphasis

Incremental-build Iterative implementation-verification-validations-
demonstration cycles

Spiral Iterative risk-based analysis of alternative approaches
and evaluation of outcomes

Agile Iterative evolution of requirements and code

Please note that the information below is focused
specifically on the utilization of different life cycle
models for software systems. In order to better
understand the interactions between software
engineering (SwE) and systems engineering (SE), please
see the Systems Engineering and Software Engineering
KA in Part 6.

Overview of Iterative-Development Process
Models

Developing and modifying software involves creative
processes that are subject to many external and
changeable forces. Long experience has shown that it is
impossible to “get it right” the first time, and that
iterative development processes are preferable to linear,
sequential development process models, such as the
well-known Waterfall model. In iterative development,
each cycle of the iteration subsumes the software of the

http://sandbox.sebokwiki.org/System_Analysis
http://sandbox.sebokwiki.org/System_Realization
http://sandbox.sebokwiki.org/System_Verification
http://sandbox.sebokwiki.org/System_Validation
http://sandbox.sebokwiki.org/Systems_Engineering_and_Software_Engineering
http://sandbox.sebokwiki.org/Related_Disciplines

previous iteration and adds new capabilities to the
evolving product to create an expanded version of the
software. Iterative development processes provide the
following advantages:

Continuous integration, verification, and validation of
the evolving product;
Frequent demonstrations of progress;
Early detection of defects;
Early warning of process problems;
Systematic incorporation of the inevitable rework that
occurs in software development; and
Early delivery of subset capabilities (if desired).

Iterative development takes many forms in SwE,
including the following:

An incremental-build process, which is used to
produce periodic (typically weekly) builds of
increasing product capabilities;
Agile development, which is used to closely involve a
prototypical customer in an iterative process that may
repeat on a daily basis; and
The spiral model, which is used to confront and
mitigate risk factors encountered in developing the
successive versions of a product.

The Incremental-Build Model
The incremental-build model is a build-test-
demonstrated model of iterative cycles in which frequent
demonstrations of progress, verification, and validation
of work-to-date are emphasized. The model is based on
stable requirements and a software architectural
specification. Each build adds new capabilities to the
incrementally growing product. The process ends when
the final version is verified, validated, demonstrated, and
accepted by the customer.

Table 2 lists some partitioning criteria for incremental
development into incremental build units of (typically)
one calendar week each. The increments and the
number of developers available to work on the project
determine the number of features that can be included
in each incremental build. This, in turn, determines the
overall schedule.

Table 2. Some partitioning criteria for incremental

builds (Fairley 2009). Reprinted with permission of the
IEEE Computer Society and John Wiley & Sons Inc. All other

rights are reserved by the copyright owner.
Kind of System Partitioning Criteria

Application package Priority of features

Safety-critical systems Safety features first; prioritized others
follow

User-intensive systems User interface first; prioritized others
follow

System software Kernel first; prioritized utilities follow

Figure 5 illustrates the details of the build-verify-
validate-demonstrate cycles in the incremental build
process. Each build includes detailed design, coding,
integration, review, and testing done by the developers.
In cases where code is to be reused without
modification, some or all of an incremental build may
consist of review, integration, and testing of the base
code augmented with the reused code. It is important to
note that development of an increment may result in
reworking previous components developed for
integration to fix defects.

Figure 5. Incremental Build-Verify-Validate-Demonstrate
Cycles (Fairley 2009). Reprinted with permission of the IEEE

Computer Society and John Wiley & Sons Inc. All other rights are
reserved by the copyright owner.

Incremental verification, validation, and demonstration,
as illustrated in Figure 5, overcome two of the major
problems of a waterfall approach by:

exposing problems early so they can be corrected as
they occur; and
incorporating minor in-scope changes to requirements
that occur as a result of incremental demonstrations

http://sandbox.sebokwiki.org/File:KF_IncrementalBuildCycles.png

in subsequent builds.

Figure 5 also illustrates that it may be possible to
overlap successive builds of the product. It may be
possible, for example, to start a detailed design of the
next version while the present version is being validated.

Three factors determine the degree of overlap that can
be achieved:

Availability of personnel;1.
Adequate progress on the previous version; and2.
The risk of significant rework on the next overlapped3.
build because of changes to the previous in-progress
build.

The incremental build process generally works well with
small teams, but can be scaled up for larger projects.

A significant advantage of an incremental build process
is that features built first are verified, validated, and
demonstrated most frequently because subsequent
builds incorporate the features of the earlier iterations.
In building the software to control a nuclear reactor, for
example, the emergency shutdown software could be
built first, as it would then be verified and validated in
conjunction with the features of each successive build.

In summary, the incremental build model, like all
iterative models, provides the advantages of continuous
integration and validation of the evolving product,
frequent demonstrations of progress, early warning of
problems, early delivery of subset capabilities, and
systematic incorporation of the inevitable rework that
occurs in software development.

The Role of Prototyping in Software
Development

In SwE, a prototype is a mock-up of the desired
functionality of some part of the system. This is in
contrast to physical systems, where a prototype is
usually the first fully functional version of a system
(Fairley 2009, 74).

In the past, incorporating prototype software into
production systems has created many problems.
Prototyping is a useful technique that should be
employed as appropriate; however, prototyping is not a
process model for software development. When building

a software prototype, the knowledge gained through the
development of the prototype is beneficial to the
program; however, the prototype code may not be used
in the deliverable version of the system. In many cases,
it is more efficient and more effective to build the
production code from scratch using the knowledge
gained by prototyping than to re-engineer the existing
code.

Life Cycle Sustainment of Software

Software, like all systems, requires sustainment efforts
to enhance capabilities, adapt to new environments, and
correct defects. The primary distinction for software is
that sustainment efforts change the software; unlike
physical entities, software components do not have to be
replaced because of physical wear and tear. Changing
the software requires re-verification and re-validation,
which may involve extensive regression testing to
determine that the change has the desired effect and has
not altered other aspects of functionality or behavior.

Retirement of Software

Useful software is rarely retired; however, software that
is useful often experiences many upgrades during its
lifetime. A later version may bear little resemblance to
the initial release. In some cases, software that ran in a
former operational environment is executed on hardware
emulators that provide a virtual machine on newer
hardware. In other cases, a major enhancement may
replace and rename an older version of the software, but
the enhanced version provides all of the capabilities of
the previous software in a compatible manner.
Sometimes, however, a newer version of software may
fail to provide compatibility with the older version, which
necessitates other changes to a system.

Primarily Evolutionary and
Concurrent Processes: The
Incremental Commitment Spiral
Model

Overview of the Incremental Commitment
Spiral Model

A view of the Incremental Commitment Spiral Model
(ICSM) is shown in Figure 6.

Figure 6. The Incremental Commitment Spiral Model (ICSM)
(Pew and Mavor 2007). Reprinted with permission by the

National Academy of Sciences, Courtesy of National Academies
Press, Washington, D.C. All other rights are reserved by the

copyright owner.

In the ICSM, each spiral addresses requirements and
solutions concurrently, rather than sequentially, as well
as products and processes, hardware, software, human
factors aspects, and business case analyses of
alternative product configurations or product line
investments. The stakeholders consider the risks and
risk mitigation plans and decide on a course of action. If
the risks are acceptable and covered by risk mitigation
plans, the project proceeds into the next spiral.

The development spirals after the first development
commitment review follow the three-team incremental
development approach for achieving both agility and
assurance shown and discussed in Figure 2,
"Evolutionary-Concurrent Rapid Change Handling and
High Assurance" of System Life Cycle Process Drivers
and Choices.

Other Views of the Incremental
Commitment Spiral Model

Figure 7 presents an updated view of the ICSM life cycle
process recommended in the National Research Council
Human-System Integration in the System Development
Process study (Pew and Mavor 2007). It was called the
Incremental Commitment Model (ICM) in the study. The
ICSM builds on the strengths of current process models,
such as early verification and validation concepts in the

http://sandbox.sebokwiki.org/File:KF_IncrementalCommitmentSpiral.png
http://sandbox.sebokwiki.org/System_Life_Cycle_Process_Drivers_and_Choices
http://sandbox.sebokwiki.org/System_Life_Cycle_Process_Drivers_and_Choices

Vee model, concurrency concepts in the concurrent
engineering model, lighter-weight concepts in the agile
and lean models, risk-driven concepts in the spiral
model, the phases and anchor points in the rational
unified process (RUP) (Kruchten 1999; Boehm 1996),
and recent extensions of the spiral model to address
systems of systems (SoS) capability acquisition (Boehm
and Lane 2007).

Figure 7. Phased View of the Generic Incremental
Commitment Spiral Model Process (Pew and Mavor 2007).
Reprinted with permission by the National Academy of Sciences,
Courtesy of National Academies Press, Washington, D.C. All other

rights are reserved by the copyright owner.

The top row of activities in Figure 7 indicates that a
number of system aspects are being concurrently
engineered at an increasing level of understanding,
definition, and development. The most significant of
these aspects are shown in Figure 8, an extension of a
similar “hump diagram” view of concurrently engineered
software activities developed as part of the RUP
(Kruchten 1999).

http://sandbox.sebokwiki.org/Vee_Life_Cycle_Model
http://sandbox.sebokwiki.org/File:KF_Phase_GenericIncremental.png

Figure 8. ICSM Activity Categories and Level of Effort (Pew
and Mavor 2007). Reprinted with permission by the National
Academy of Sciences, Courtesy of National Academies Press,

Washington, D.C. All other rights are reserved by the copyright
owner.

As with the RUP version, the magnitude and shape of the
levels of effort will be risk-driven and likely to vary from
project to project. Figure 8 indicates that a great deal of
concurrent activity occurs within and across the various
ICSM phases, all of which need to be "synchronized and
stabilized," a best-practice phrase taken from Microsoft
Secrets (Cusumano and Selby 1996) to keep the project
under control.

The review processes and use of independent experts
are based on the highly successful AT&T Architecture
Review Board procedures described in “Architecture
Reviews: Practice and Experience” (Maranzano et al.
2005). Figure 9 shows the content of the feasibility
evidence description. Showing feasibility of the
concurrently developed elements helps synchronize and
stabilize the concurrent activities.

http://sandbox.sebokwiki.org/File:KF_ICSMActivityCategories.png

Figure 9. Feasibility Evidence Description Content
(Pew and Mavor 2007). Reprinted with permission by
the National Academy of Sciences, Courtesy of National
Academies Press, Washington, D.C. All other rights are

reserved by the copyright owner.

The operations commitment review (OCR) is different in
that it addresses the often-higher operational risks of
fielding an inadequate system. In general, stakeholders
will experience a two- to ten-fold increase in
commitment level while going through the sequence of
engineering certification review (ECR) to design
certification review (DCR) milestones, but the increase
in going from DCR to OCR can be much higher. These
commitment levels are based on typical cost profiles
across the various stages of the acquisition life cycle.

Underlying ICSM Principles

ICSM has four underlying principles which must be
followed:

Stakeholder value-based system definition and1.
evolution;
Incremental commitment and accountability;2.
Concurrent system and software definition and3.
development; and
Evidence and risk-based decision making.4.

Model Experience to Date

The National Research Council Human-Systems
Integration study (2008) found that the ICSM processes
and principles correspond well with best commercial
practices, as described in the Next Generation Medical
Infusion Pump Case Study in Part 7. Further examples
are found in Human-System Integration in the System
Development Process: A New Look (Pew and Mavor
2007, chap. 5), Software Project Management (Royce
1998, Appendix D), and the annual series of "Top Five

http://sandbox.sebokwiki.org/File:KF_FeasibilityEvidenceDescription.png
http://sandbox.sebokwiki.org/Next_Generation_Medical_Infusion_Pump_Case_Study
http://sandbox.sebokwiki.org/Next_Generation_Medical_Infusion_Pump_Case_Study

Quality Software Projects", published in CrossTalk
(2002-2005).

Advise this information below be deleted or moved to
Part 6 because some of it will be redundant to the new
article Agile Systems Engineering and the Lean part if
redundant to the Lean Engineering article. These moves
will drive updates/clean-ups needed to the references. ---

Agile and Lean Processes
According to the INCOSE Systems Engineering
Handbook 3.2.2, “Project execution methods can be
described on a continuum from 'adaptive' to 'predictive.'
Agile methods exist on the 'adaptive' side of this
continuum, which is not the same as saying that agile
methods are 'unplanned' or 'undisciplined,'” (INCOSE
2011, 179). Agile development methods can be used to
support iterative life cycle models, allowing flexibility
over a linear process that better aligns with the planned
life cycle for a system. They primarily emphasize the
development and use of tacit interpersonal knowledge as
compared to explicit documented knowledge, as
evidenced in the four value propositions in the "Agile
Manifesto":

We are uncovering better ways of
developing software by doing it and
helping others do it. Through this work we
have come to value

Individuals and interactions over
processes and tools;
Working software over
comprehensive documentation;
Customer collaboration over contract
negotiation; and
Responding to change over following
a plan.

That is, while there is value in the items on
the right, we value the items on the left
more. (Agile Alliance 2001)

Lean processes are often associated with agile methods,

although they are more scalable and applicable to high-
assurance systems. Below, some specific agile methods
are presented, and the evolution and content of lean
methods is discussed. Please see "Primary References",
"Additional References", and the Lean Engineering
article for more detail on specific agile and lean
processes.

Scrum

Figure 10 shows an example of Scrum as an agile
process flow. As with most other agile methods, Scrum
uses the evolutionary sequential process shown in Table
1 (above) and described in Fixed-Requirements and
Evolutionary Development Processes section in which
systems capabilities are developed in short periods,
usually around 30 days. The project then re-prioritizes
its backlog of desired features and determines how many
features the team (usually 10 people or less) can develop
in the next 30 days.

Figure 10 also shows that once the features to be
developed for the current Scrum have been expanded
(usually in the form of informal stories) and allocated to
the team members, the team establishes a daily rhythm
of starting with a short meeting at which each team
member presents a roughly one-minute summary
describing progress since the last Scrum meeting,
potential obstacles, and plans for the upcoming day.

Figure 10. Example Agile Process Flow: Scrum (Boehm and
Turner 2004). Reprinted with permission of Ken Schwaber. All

other rights are reserved by the copyright owner.

http://sandbox.sebokwiki.org/Lean_Engineering
http://sandbox.sebokwiki.org/System_Life_Cycle_Process_Drivers_and_Choices#Fixed-Requirements_and_Evolutionary_Development_Processes
http://sandbox.sebokwiki.org/System_Life_Cycle_Process_Drivers_and_Choices#Fixed-Requirements_and_Evolutionary_Development_Processes
http://sandbox.sebokwiki.org/File:Tale_of_Two_Implementations_Schwaber.jpg

Architected Agile Methods

Over the last decade, several organizations have been
able to scale up agile methods by using two layers of ten-
person Scrum teams. This involves, among other things,
having each Scrum team’s daily meeting followed up by
a daily meeting of the Scrum team leaders discussing up-
front investments in evolving system architecture
(Boehm et al. 2010). Figure 11 shows an example of the
Architected Agile approach.

Figure 11. Example of Architected Agile Process (Boehm
2009). Reprinted with permission of Barry Boehm on behalf of
USC-CSSE. All other rights are reserved by the copyright owner.

Agile Practices and Principles

As seen with the Scrum and architected agile methods,
"generally-shared" principles are not necessarily
"uniformly followed". However, there are some general
practices and principles shared by most agile methods:

The project team understands, respects, works, and
behaves within a defined SE process;
The project is executed as fast as possible with
minimum down time or staff diversion during the
project and the critical path is managed;
All key players are physically or electronically
collocated, and "notebooks" are considered team
property available to all;
Baseline management and change control are
achieved by formal, oral agreements based on “make
a promise—keep a promise” discipline. Participants
hold each other accountable;
Opportunity exploration and risk reduction are
accomplished by expert consultation and rapid model
verification coupled with close customer collaboration;
Software development is done in a rapid development
environment while hardware is developed in a multi-

http://sandbox.sebokwiki.org/File:Example_of_Architected_Agile_Process_Replacement_070912.png

disciplined model shop; and
A culture of constructive confrontation pervades the
project organization. The team takes ownership for
success; it is never “someone else’s responsibility.”

Agile development principles (adapted for SE) are as
follows (adapted from Principles behind the Agile
Manifesto (Beedle et al. 2009)):

First, satisfy the customer through early and1.
continuous delivery of valuable software (and other
system elements).
Welcome changing requirements, even late in2.
development; agile processes harness change for the
customer’s competitive advantage.
Deliver working software (and other system elements)3.
frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.
Business personnel and developers must work4.
together daily throughout the project.
Build projects around motivated individuals; give them5.
the environment, support their needs, and trust them
to get the job done.
The most efficient and effective method of conveying6.
information is face-to-face conversation.
Working software (and other system elements) is the7.
primary measure of progress.
Agile processes promote sustainable development;8.
the sponsors, developers, and users should be able to
maintain a constant pace indefinitely.
Continuous attention to technical excellence and good9.
design enhances agility.
Simplicity—the art of maximizing the amount of work10.
not done—is essential.
The best architectures, requirements, and designs11.
emerge from self-organizing teams.

A team should reflect on how to become more effective
at regular intervals and then tune and adjust its behavior
accordingly. This self-reflection is a critical aspect for
projects that implement agile processes.

Lean Systems Engineering and
Development

Origins

As the manufacturing of consumer products such as
automobiles became more diversified, traditional pre-
planned mass-production approaches had increasing
problems with quality and adaptability. Lean
manufacturing systems such as the Toyota Production
System (TPS) (Ohno 1988) were much better suited to
accommodate diversity, to improve quality, and to
support just-in-time manufacturing that could rapidly
adapt to changing demand patterns without having to
carry large, expensive inventories.

Much of this transformation was stimulated by the work
of W. Edwards Deming, whose Total Qual i ty
Management (TQM) approach shifted responsibility for
quality and productivity from planners and inspectors to
the production workers who were closer to the real
processes (Deming 1982). Deming's approach involved
everyone in the manufacturing organization in seeking
continuous process improvement, or "Kaizen".

Some of the TQM techniques, such as statistical process
control and repeatability, were more suited to repetitive
manufacturing processes than to knowledge work such
as systems engineering (SE) and software engineering
(SwE). Others, such as early error elimination, waste
elimination, workflow stabilization, and Kaizen, were
equally applicable to knowledge work. Led by Watts
Humphrey, TQM became the focus for the Software
Capability Maturity Model (Humphrey 1987; Paulk et al.
1994) and the CMM-Integrated or CMMI, which
extended its scope to include systems engineering
(Chrissis et al. 2003). One significant change was the
redefinition of Maturity Level 2 from "Repeatable" to
"Managed".

The Massachusetts Institute of Technology (MIT)
conducted studies of the TPS, which produced a similar
approach that was called the "Lean Production System"
(Krafcik 1988; Womack et al. 1990). Subsequent
development of "lean thinking" and related work at MIT
led to the Air Force-sponsored Lean Aerospace Initiative
(now called the Lean Advancement Initiative), which
applied lean thinking to SE (Murman 2003, Womack-
Jones 2003). Concurrently, lean ideas were used to
strengthen the scalability and dependability aspects of
agile methods for software (Poppendieck 2003; Larman-
Vodde 2009). The Kanban flow-oriented approach has
been successfully applied to software development
(Anderson 2010).

Principles

Each of these efforts has developed a similar but
different set of Lean principles. For systems engineering,
the current best source is Lean for Systems Engineering,
the product of several years’ work by the INCOSE Lean
SE working group (Oppenheim 2011). It is organized
into six principles, each of which is elaborated into a set
of lean enabler and sub-enabler patterns for satisfying
the principle:

Value. Guide the project by determining the value1.
propositions of the customers and other key
stakeholders. Keep them involved and manage
changes in their value propositions.
Map the Value Stream (Plan the Program). This2.
includes thorough requirements specification, the
concurrent exploration of trade spaces among the
value propositions, COTS evaluation, and technology
maturity assessment, resulting in a full project plan
and set of requirements.
Flow. Focus on the project’s critical path activities to3.
avoid expensive work stoppages, including
coordination with external suppliers.
Pull. Pull the next tasks to be done based on4.
prioritized needs and dependencies. If a need for the
task can’t be found, reject it as waste.
Perfection. Apply continuous process improvement5.
to approach perfection. Drive defects out early to get
the system Right The First #Time, vs. fixing them
during inspection and test. Find and fix root causes
rather than symptoms.
Respect for People. Flow down responsibility,6.
authority, and accountability to all personnel. Nurture
a learning environment. Treat people as the
organization’s most valued assets. (Oppenheim 2011)

These lean SE principles are highly similar to the four
underlying incremental commitment spiral model
principles.

Principle 1: Stakeholder value-based system
definition and evolution, addresses the lean SE
principles of value, value stream mapping, and
respect for people (developers are success-critical
stakeholders in the ICSM).
Principle 2: Incremental commitment and

accountability, partly addresses the pull principle,
and also addresses respect for people (who are
accountable for their commitments).
Principle 3: Concurrent system and software
definition and development, partly addresses both
value stream mapping and flow.
Principle 4: Evidence and risk-based decision
making, uses evidence of achievability as its measure
of success. Overall, the ICSM principles are somewhat
light on continuous process improvement, and the
lean SE principles are somewhat insensitive to
requirements emergence in advocating a full pre-
specified project plan and set of requirements.

See Lean Engineering for more information.

References

Works Cited

Agile Alliance. 2001. “Manifesto for Agile Software
Development.” http://agilemanifesto.org/.

Anderson, D. 2010. Kanban, Sequim, WA: Blue Hole
Press.

Boehm, B. 1996. "Anchoring the Software Process."
IEEE Software 13(4): 73-82.

Boehm, B. and J. Lane. 2007. “Using the Incremental
Commitment Model to Integrate System Acquisition,
Systems Engineering, and Software Engineering.”
CrossTalk. 20(10) (October 2007): 4-9.

Boehm, B., J. Lane, S. Koolmanjwong, and R. Turner.
2010. “Architected Agile Solutions for Software-Reliant
Systems,” in Dingsoyr, T., T. Dyba., and N. Moe (eds.),
Agile Software Development: Current Research and
Future Directions. New York, NY, USA: Springer.

Boehm, B. and R. Turner. 2004. Balancing Agility and
Discipline. New York, NY, USA: Addison-Wesley.

Castellano, D.R. 2004. “Top Five Quality Software
Projects.” CrossTalk. 17(7) (July 2004): 4-19. Available
a t :
http://www.crosstalkonline.org/storage/issue-archives/20
04/200407/200407-0-Issue.pdf.

Chrissis, M., M. Konrad, and S. Shrum. 2003. CMMI:

http://sandbox.sebokwiki.org/Lean_Engineering
http://agilemanifesto.org/
http://www.crosstalkonline.org/storage/issue-archives/2004/200407/200407-0-Issue.pdf
http://www.crosstalkonline.org/storage/issue-archives/2004/200407/200407-0-Issue.pdf

Guidelines for Process Integration and Product
Improvement. New York, NY, USA, Addison Wesley.

Deming, W.E. 1982. Out of the Crisis. Cambridge, MA,
USA: MIT.

Fairley, R. 2009. Managing and Leading Software
Projects. New York, NY, USA: John Wiley & Sons.

Forsberg, K. 1995. "If I Could Do That, Then I Could…’
System Engineering in a Research and Development
Environment." Proceedings of the Fifth International
Council on Systems Engineering (INCOSE) International
Symposium. 22-26 July 1995. St Louis, MO, USA.

Forsberg, K., H. Mooz, and H. Cotterman. 2005.
Visualizing Project Management, 3rd ed. New York, NY,
USA: John Wiley & Sons.

Humphrey, W., 1987. “Characterizing the Software
Process: A Maturity Framework.” Pittsburgh, PA, USA:
CMU Software Engineering Institute. CMU/SEI-87-
TR-11.

Jarzombek, J. 2003. “Top Five Quality Software
Projects.” CrossTalk. 16(7) (July 2003): 4-19. Available
a t :
http://www.crosstalkonline.org/storage/issue-archives/20
03/200307/200307-0-Issue.pdf.

Krafcik, J. 1988. "Triumph of the lean production
system". Sloan Management Review. 30(1): 41–52.

Kruchten, P. 1999. The Rational Unified Process. New
York, NY, USA: Addison Wesley.

Larman , C. and B. Vodde. 2009. Scaling Lean and Agile
Development. New York, NY, USA: Addison Wesley.

Maranzano, J.F., S.A. Rozsypal, G.H. Zimmerman, G.W.
Warnken, P.E. Wirth, D.M. Weiss. 2005. “Architecture
Reviews: Practice and Experience.” IEEE Software.
22(2): 34-43.

Murman, E. 2003. Lean Systems Engineering I, II,
Lecture Notes, MIT Course 16.885J, Fall. Cambridge,
MA, USA: MIT.

Oppenheim, B. 2011. Lean for Systems Engineering.
Hoboken, NJ: Wiley.

Paulk, M., C. Weber, B. Curtis, and M. Chrissis. 1994.
The Capability Maturity Model: Guidelines for Improving
the Software Process. Reading, MA, USA: Addison

http://www.crosstalkonline.org/storage/issue-archives/2003/200307/200307-0-Issue.pdf
http://www.crosstalkonline.org/storage/issue-archives/2003/200307/200307-0-Issue.pdf

Wesley.

Pew, R. and A. Mavor (eds.). 2007. Human-System
Integration in The System Development Process: A New
Look. Washington, DC, USA: The National Academies
Press.

Poppendieck, M. and T. Poppendieck. 2003. Lean
Software Development: An Agile Toolkit for Software
Development Managers. New York, NY, USA: Addison
Wesley.

Spruill, N. 2002. “Top Five Quality Software Projects.”
CrossTalk. 15(1) (January 2002): 4-19. Available at:
http://www.crosstalkonline.org/storage/issue-archives/20
02/200201/200201-0-Issue.pdf.

Stauder, T. “Top Five Department of Defense Program
Awards.” CrossTalk. 18(9) (September 2005): 4-13.
A v a i l a b l e a t
http://www.crosstalkonline.org/storage/issue-archives/20
05/200509/200509-0-Issue.pdf.

Womack, J., D. Jones, and D Roos. 1990. The Machine
That Changed the World: The Story of Lean Production.
New York, NY, USA: Rawson Associates.

Womack, J. and D. Jones. 2003. Lean Thinking. New
York, NY, USA: The Free Press.

Primary References

Beedle, M., et al. 2009. "The Agile Manifesto: Principles
behind the Agile Manifesto". in The Agile Manifesto
[database online]. Accessed 2010. Available at:
www.agilemanifesto.org/principles.html.

Boehm, B. and R. Turner. 2004. Balancing Agility and
Discipline. New York, NY, USA: Addison-Wesley.

Fairley, R. 2009. Managing and Leading Software
Projects. New York, NY, USA: J. Wiley & Sons.

Forsberg, K., H. Mooz, and H. Cotterman. 2005.
Visualizing Project Management, 3rd ed. New York, NY,
USA: J. Wiley & Sons.

INCOSE. 2012. Systems Engineering Handbook: A Guide
for System Life Cycle Processes and Activities. Version
3.2.2. San Diego, CA, USA: International Council on
Systems Engineer ing (INCOSE) , INCOSE-
TP-2003-002-03.2.2.

http://www.crosstalkonline.org/storage/issue-archives/2002/200201/200201-0-Issue.pdf
http://www.crosstalkonline.org/storage/issue-archives/2002/200201/200201-0-Issue.pdf
http://www.crosstalkonline.org/storage/issue-archives/2005/200509/200509-0-Issue.pdf
http://www.crosstalkonline.org/storage/issue-archives/2005/200509/200509-0-Issue.pdf
http://sandbox.sebokwiki.org/The_Agile_Manifesto:_Principles_behind_the_Agile_Manifesto
http://sandbox.sebokwiki.org/The_Agile_Manifesto:_Principles_behind_the_Agile_Manifesto
http://sandbox.sebokwiki.org/Balancing_Agility_and_Discipline
http://sandbox.sebokwiki.org/Balancing_Agility_and_Discipline
http://sandbox.sebokwiki.org/Managing_and_Leading_Software_Projects
http://sandbox.sebokwiki.org/Managing_and_Leading_Software_Projects
http://sandbox.sebokwiki.org/Visualizing_Project_Management
http://sandbox.sebokwiki.org/INCOSE_Systems_Engineering_Handbook

Lawson, H. 2010. A Journey Through the Systems
Landscape. Kings College, UK: College Publications.

Pew, R., and A. Mavor (eds.). 2007. Human-System
Integration in the System Development Process: A New
Look. Washington, DC, USA: The National Academies
Press.

Royce, W.E. 1998. Software Project Management: A
Unified Framework. New York, NY, USA: Addison
Wesley.

Additional References

Anderson, D. 2010. Kanban. Sequim, WA, USA: Blue
Hole Press.

Baldwin, C. and K. Clark. 2000. Design Rules: The Power
of Modularity. Cambridge, MA, USA: MIT Press.

Beck, K. 1999. Extreme Programming Explained. New
York, NY, USA: Addison Wesley.

Beedle, M., et al. 2009. "The Agile Manifesto: Principles
behind the Agile Manifesto" in The Agile Manifesto
[database online]. Accessed 2010. Available at:
www.agilemanifesto.org/principles.html

Biffl, S., A. Aurum, B. Boehm, H. Erdogmus, and P.
Gruenbacher (eds.). 2005. Value-Based Software
Engineering. New York, NY, USA: Springer.

Boehm, B. 1988. “A Spiral Model of Software
Development.” IEEE Computer. 21(5): 61-72.

Boehm, B. 2006. “Some Future Trends and Implications
for Systems and Software Engineering Processes.”
Systems Engineering. 9(1): 1-19.

Boehm, B., A. Egyed, J. Kwan, D. Port, A. Shah, and R.
Madachy. 1998. “Using the WinWin Spiral Model: A Case
Study.” IEEE Computer. 31(7): 33-44.

Boehm, B., J. Lane, S. Koolmanojwong, and R. Turner.
2013 (in press). Embracing the Spiral Model: Creating
Successful Systems with the Incremental Commitment
Spiral Model. New York, NY, USA: Addison Wesley.

Castellano, D.R. 2004. “Top Five Quality Software
Projects.” CrossTalk. 17(7) (July 2004): 4-19. Available
a t :
http://www.crosstalkonline.org/storage/issue-archives/20
04/200407/200407-0-Issue.pdf.

http://sandbox.sebokwiki.org/A_Journey_Through_the_Systems_Landscape
http://sandbox.sebokwiki.org/A_Journey_Through_the_Systems_Landscape
http://sandbox.sebokwiki.org/Human-System_Integration_in_the_System_Development_Process
http://sandbox.sebokwiki.org/Human-System_Integration_in_the_System_Development_Process
http://sandbox.sebokwiki.org/Software_Project_Management
http://www.crosstalkonline.org/storage/issue-archives/2004/200407/200407-0-Issue.pdf
http://www.crosstalkonline.org/storage/issue-archives/2004/200407/200407-0-Issue.pdf

Checkland, P. 1981. Systems Thinking, Systems Practice.
New York, NY, USA: Wiley.

Crosson, S. and B. Boehm. 2009. “Adjusting Software
Life Cycle Anchorpoints: Lessons Learned in a System of
Systems Context.” Proceedings of the Systems and
Software Technology Conference, 20-23 April 2009, Salt
Lake City, UT, USA.

Dingsoyr, T., T. Dyba. and N. Moe (eds.). 2010. "Agile
Software Development: Current Research and Future
Directions.” Chapter in B. Boehm, J. Lane, S.
Koolmanjwong, and R. Turner, Architected Agile
Solutions for Software-Reliant Systems. New York, NY,
USA: Springer.

Dorner, D. 1996. The Logic of Failure. New York, NY,
USA: Basic Books.

Faisandier, A. 2012. Systems Architecture and Design.
Belberaud, France: Sinergy'Com.

Forsberg, K. 1995. "'If I Could Do That, Then I Could…'
System Engineering in a Research and Development
Environment.” Proceedings of the Fifth Annual
International Council on Systems Engineering (INCOSE)
International Symposium. 22-26 July 1995. St. Louis,
MO, USA.

Forsberg, K. 2010. “Projects Don’t Begin With
Requirements.” Proceedings of the IEEE Systems
Conference. 5-8 April 2010. San Diego, CA, USA.

Gilb, T. 2005. Competitive Engineering. Maryland
Heights, MO, USA: Elsevier Butterworth Heinemann.

Goldratt, E. 1984. The Goal. Great Barrington, MA, USA:
North River Press.

Hitchins, D. 2007. Systems Engineering: A 21st Century
Systems Methodology. New York, NY, USA: Wiley.

Holland, J. 1998. Emergence. New York, NY, USA:
Perseus Books.

ISO/IEC. 2010. Systems and Software Engineering, Part
1: Guide for Life Cycle Management. Geneva,
Switzerland: International Organization for
Standardization (ISO)/International Electrotechnical
Commission (IEC), ISO/IEC 24748-1:2010.

ISO/IEC/IEEE. 2015. Systems and Software Engineering
-- System Life Cycle Processes. Geneva, Switzerland:
International Organisation for Standardisation /

International Electrotechnical Commissions.
ISO/IEC/IEEE 15288:2015.

ISO/IEC. 2003. Systems Engineering — A Guide for The
Application of ISO/IEC 15288 System Life Cycle
Processes. Geneva, Switzerland: International
Organization for Standardization (ISO)/International
Electrotechnical Commission (IEC), ISO/IEC 19760:2003
(E).

Jarzombek, J. 2003. “Top Five Quality Software
Projects.” CrossTalk. 16(7) (July 2003): 4-19. Available
a t :
http://www.crosstalkonline.org/storage/issue-archives/20
03/200307/200307-0-Issue.pdf.

Kruchten, P. 1999. The Rational Unified Process. New
York, NY, USA: Addison Wesley.

Landis, T. R. 2010. Lockheed Blackbird Family (A-12,
YF-12, D-21/M-21 & SR-71). North Branch, MN, USA:
Specialty Press.

Madachy, R. 2008. Software Process Dynamics. New
York, NY, USA: Wiley.

Maranzano, J., et al. 2005. “Architecture Reviews:
Practice and Experience.” IEEE Software. 22(2): 34-43.

National Research Council of the National Academies
(USA). 2008. Pre-Milestone A and Early-Phase Systems
Engineering. Washington, DC, USA: The National
Academies Press.

Osterweil, L. 1987. “Software Processes are Software
Too.” Proceedings of the SEFM 2011: 9th International
Conference on Software Engineering. Monterey, CA,
USA.

Poppendeick, M. and T. Poppendeick. 2003. Lean
Software Development: an Agile Toolkit. New York, NY,
USA: Addison Wesley.

Rechtin, E. 1991. System Architecting: Creating and
Building Complex Systems. Upper Saddle River, NY,
USA: Prentice-Hall.

Rechtin, E., and M. Maier. 1997. The Art of System
Architecting. Boca Raton, FL, USA: CRC Press.

Schwaber, K. and M. Beedle. 2002. Agile Software
Development with Scrum. Upper Saddle River, NY, USA:
Prentice Hall.

http://www.crosstalkonline.org/storage/issue-archives/2003/200307/200307-0-Issue.pdf
http://www.crosstalkonline.org/storage/issue-archives/2003/200307/200307-0-Issue.pdf

Spruill, N. 2002. “Top Five Quality Software Projects.”
CrossTalk. 15(1) (January 2002): 4-19. Available at:
http://www.crosstalkonline.org/storage/issue-archives/20
02/200201/200201-0-Issue.pdf.

Stauder, T. 2005. “Top Five Department of Defense
Program Awards.” CrossTalk. 18(9) (September 2005):
4 - 1 3 . A v a i l a b l e a t
http://www.crosstalkonline.org/storage/issue-archives/20
05/200509/200509-0-Issue.pdf.

Warfield, J. 1976. Societal Systems: Planning, Policy, and
Complexity. New York, NY, USA: Wiley.

Womack, J. and D. Jones. 1996. Lean Thinking. New
York, NY, USA: Simon and Schuster.

< Previous Article | Parent Article | Next Article >
SEBoK v. 2.10, released 06 May 2024

Retrieved from
"https://sandbox.sebokwiki.org/index.php?title=Incremental_Life_Cyc
le_Model&oldid=71466"

This page was last edited on 2 May 2024, at 22:30.

http://www.crosstalkonline.org/storage/issue-archives/2002/200201/200201-0-Issue.pdf
http://www.crosstalkonline.org/storage/issue-archives/2002/200201/200201-0-Issue.pdf
http://www.crosstalkonline.org/storage/issue-archives/2005/200509/200509-0-Issue.pdf
http://www.crosstalkonline.org/storage/issue-archives/2005/200509/200509-0-Issue.pdf
http://sandbox.sebokwiki.org/Vee_Life_Cycle_Model
http://sandbox.sebokwiki.org/System_Life_Cycle_Models
http://sandbox.sebokwiki.org/Agile_Systems_Engineering
https://sandbox.sebokwiki.org/index.php?title=Incremental_Life_Cycle_Model&oldid=71466
https://sandbox.sebokwiki.org/index.php?title=Incremental_Life_Cycle_Model&oldid=71466

