
Reverse Engineering a
UAV Prototype using
Agile Practices
Reverse Engineering a UAV Prototype using Agile Practices

The printable version is no longer supported and may
have rendering errors. Please update your browser
bookmarks and please use the default browser print
function instead.

Lead Author: Phyllis Marbach

This example shows how Agile Practices were applied to
an unmanned air vehicle (UAV) that had been developed
as a prototype and was intended to be produced and
marketed (Marbach 2012). At the time it was required to
have the Federal Aviation Agency (FAA) approve the use
of a UAV in populated areas. FAA required artifacts such
as requirements, architecture representations and test
procedures to grant this approval. A team was
established to reverse engineer the artifacts needed
from the operational prototypes being flown at the time.
The test manager requested that the life cycle process to
produce these artifacts be agile. Stakeholder needs were
determined, and a plan was written to describe the
problem and the process to be applied. Then the
approach was presented to the team, the product
backlog was developed, and a training and planning
session was started.

Contents
Description
Summary
Lessons Learned
References

Works Cited
Primary References
Additional References

http://sandbox.sebokwiki.org/Reverse_Engineering_a_UAV_Prototype_using_Agile_Practices

Description
The agile process is described in the SEBoK here. When
defining requirements (Carlson 2010) proposes that the
requirements be identified, gathered, defined, and
developed in iterations (or sprints). These requirements
are written in the User Story format and controlled and
managed in a product backlog. The User Stories in the
Product backlog are selected and estimated by the team
based on importance and need. The most important user
stories (or requirements) are prioritized and moved to
the top of the product backlog. Then those User Stories
are broken into tasks and the tasks are estimated. The
number of tasks that the team can complete are then put
into the Sprint Backlog (or iteration backlog) and those
tasks are then worked on by the team. For this work the
UAV and its code were already operational. We had
working code, a test bed, user interfaces and user
procedures. The goal was to produce requirements
documentation, architecture and design diagrams, a
trace matrix of tests to requirements, software test
descriptions and a Hazard Analysis to take before the
FAA.

The team assembled were experienced engineers, but
not with this UAV system. There were UAV subject
matter experts (SMEs) still on the program, but they
were not always available to answer questions or come
to reviews. There was existing documentation in
program repositories such as charts and operator
procedures, but we did not know where to find this
information. Given these challenges it was decided to
use collaborative tools to manage the information as it
was discovered and make it visible to the team and the
UAV SMEs.

The first set of information produced was the product
backlog. An example of the product backlog is shown in
Figure 1. Epics are a set of User Stories that take more
than one iteration to complete. A user story is broken
into tasks such as those shown in Figure 2. These
templates were developed to understand the scope of
each task and what the definition of done for that task
was. The goal was to identify tasks that take a maximum
of 16 work hours to complete. The product backlog was
developed and managed in an Application Lifecycle
Management (ALM) Tool. Our team did a trades study
when selecting a tool for use. Parameters considered in
the trade included ease of use, cost, and features of the
tool itself. The tool selected was VersionOne.

The team then determined what collaboration tool would

be used to make our discovered information visible. The
requirements for this tool were: easy to access, easy to
use, easy to comment on and easy to change. At the time
these tools were available: Mediawiki, an open source,
TWikiTM, another open source, Confluence, SharePoint,
and Socialtext. It was decided to use TWikiTM.

For each of the epics in work, such as “Power On”, the
Description of Functionality was written in the
collaboration tool. Figure 3 shows the list of content in
the collaboration tool for the artifacts being developed.

Figure 1. Example Product Backlog for an Unmanned Air
Vehicle (UAV) (Marbach 2023, used with permission)

Figure 2. User Story Templates and Task Templates for
Consistent Development (Marbach 2023, used with

permission)

Figure 3. Collaboration Tool Table of Contents for a system
being analyzed (Marbach 2023, used with permission)

The Collaboration Home Page had an introduction about
the analysis underway. It had links to a list of functional
threads that were links to the work products themselves.
There were also links to the references used, links to the
test environment information and links to templates for
the work products with instructions. The work products
being developed, as shown in Figure 3, were
Collaboration Tool Templates, Functional Descriptions,
Requirements including Use Cases, Hazard Analysis and
Risk Mitigation, and Test Procedures including Test
Cases and Test Descriptions.

Once the requirements were complete for one Epic, such
as “Power On” the material in the Collaboration Tool was
exported into a Word Document and that was parsed into
a Requirements Management tool. This team used the
Dynamic Object-Oriented Requirements System
(DOORS). The final Software Requirement Specification
(SRS) was created from DOORS. After peer review the
release documents were baselined into the Data
Management Tool Repository that provided
Configuration Management control. The Integrated
Toolset used for this project is shown in Figure 4.

Figure 4. Integrated Toolset for Analyzing a Prototype UAV
(Marbach 2023, used with permission)

The sequence of development started with the

http://sandbox.sebokwiki.org/File:UAV_Figure_1.jpg
http://sandbox.sebokwiki.org/File:UAV_Figure_2.png
http://sandbox.sebokwiki.org/File:UAV_Figure_3.png
http://sandbox.sebokwiki.org/File:UAV_Figure_4.jpg

prioritized user story to be worked first. Then the
Collaboration tool was used to capture the information
that members of the reverse engineering team worked
with SMEs to reach an understanding of the functional
requirements, hazard analysis and software test
descriptions for the user story in development. A formal
peer review was conducted and when agreed it was
ready those documents were parsed into the
requirements management tool. The Software Test
Description (STD) was used to test the UAV code using
the test platform. If the STD is determined to be
complete, then it is also parsed into the requirements
management tool and traced to the requirements that
have been verified by testing. From the requirements
management tool formal artifacts such as the Software
Requirement Specification, the Software Test
Description and the Trace Matrix were produced. Those
were put into a configuration management tool. If the
STD used for the testing was not Done then any markups
were made into the Collaboration Tool and the Peer
Review was conducted again. Essentially, each iteration
resulted in potentially deliverable products that could be
delivered to a stakeholder.

The data management tool, shown in Figure 4 by the
green oval contained a repository of draft folders, peer
review records, action items created, tracking and
closure, a repository of release folders, the calendar,
meeting notifications, distribution lists, access control to
records, configuration management workflow and
approvals, and it provided collaboration across
companies, subcontractors, and customers.

The documentation created included software
requirements specification that was created epic by epic
rather than all at once, software test descriptions
created as each feature is analyzed, and a Hazard
Analysis being performed one epic at a time. These
documents were updated each increment. An increment
is a set of iterations. Each backlog item included
conducting peer reviews of the content, as shown in
Figure 2 list of tasks of each user story. Records of the
peer reviews were maintained in the data management
tool as mentioned above. The definition of done for these
artifacts was that the work was not complete until the
information was posted into the Requirements
Management Tool. The Software Test Descriptions were
linked to the requirements in the Requirements
Management Tool thus beginning the Trace Matrix.

The Agile Practices described in this article can be
mapped to LEAN Disciplines as shown in Table 1.

Table 1. Agile Practices Drive LEAN Disciplines (Used
with Permission)

LEAN Disciplines Agile Requirements Analysis

1. Establish Clear
Priorities

1. Product backlog is always
prioritized; Team works on highest
priority items first

2. Eliminate Bad
Multitasking – Focus
and Finish

2. Team is shielded from
interruptions that cause bad
multitasking

3. Limit the Release of
Work in Process (WIP)
to Deliver Earlier

3. Tasks are pulled from the iteration
backlog one at a time to limit
individual WIP

4. Prepare! Start to
Finish

4. Requirements are not selected
from the product backlog until
everything needed is available

5. Use Checklists to
Prevent Defects and
Traveled Risk

5. Checklists and guides are used to
prevent costly rework

6. Face into and
Resolve Issues Quickly

6. Daily stand-up meetings force
issues and risks to be identified and
resolved quickly

7. Drive Daily Execution 7. Daily stand-up meetings drive
team-based execution

Summary
Systems engineering best practice is to perform
requirements analysis, verification and validation as a
system is being developed. Artifacts are created and
configuration controlled as the system matures. This
example describes how an existing operating prototype
could be transitioned to a production system by
performing requirements analysis, risk mitigation and
hazard analysis even after the prototype is developed
and operational. There is value in performing these
system engineering tasks for an existing prototype to
verify it is safe to operate and to achieve approval to fly.
Using iterative and incremental development of these
artifacts limited the work in process (WIP). The whole
team worked one epic at a time to produce artifacts that
addressed that one epic and verified the requirements,
testing and analysis of hazards relative to that one epic,
such as “Power On”. Then they would work the next epic
focusing on one capability at a time therefore reinforcing
each other’s work quite effectively.

Lessons Learned
Developing Systems Engineering products such as
Systems Requirements Specifications, Hazards

Analysis, Test *Procedures, and Verification Trace
Matrix in an iterative incremental way is effective.
Some new to using these principles and methods did
resist at first but then saw the value and became
advocates of the iterative incremental process.
The use of tools helped keep the work visible, aiding
in communication and accuracy.
Access to Subject Matter Experts (SMEs) was critical to
producing accurate products.
The team focused on known elements first. Then the
knowledge learned was applied to elements with more
uncertainty. This applies the Lean Principle of limiting
the work in process.
The team did not start work on an element until they
had what was needed to accomplish the analysis. This
applies the Lean Principle of working start to finish.

References

Works Cited

Carlson, R., Matzuc, P., 2010, “A Viable Systems
Engineering Approach”, Proceedings of the Systems and
Software Technology Conference (SSTC), 2010, Salt
Lake City, Utah, USA.

Marbach, P., 2012, “An Experience Report on Agile
Systems Engineering Requirements Analysis,”
Proceedings of the INCOSE-LA Mini-conference, 2012,
Los Angeles, CA, USA.

Primary References

None.

Additional References

None.

< Previous Article | Parent Article | Next Article >
SEBoK v. 2.10, released 06 May 2024

Retrieved from

http://sandbox.sebokwiki.org/Federal_Aviation_Administration_(FAA)_Next_Generation_Air_Transportation_System
http://sandbox.sebokwiki.org/Matrix_of_Implementation_Examples
http://sandbox.sebokwiki.org/UK_West_Coast_Route_Modernisation_Project

"https://sandbox.sebokwiki.org/index.php?title=Reverse_Engineering
_a_UAV_Prototype_using_Agile_Practices&oldid=71447"

This page was last edited on 2 May 2024, at 22:27.

https://sandbox.sebokwiki.org/index.php?title=Reverse_Engineering_a_UAV_Prototype_using_Agile_Practices&oldid=71447
https://sandbox.sebokwiki.org/index.php?title=Reverse_Engineering_a_UAV_Prototype_using_Agile_Practices&oldid=71447

