
System Architecture
System Architecture

The printable version is no longer supported and may
have rendering errors. Please update your browser
bookmarks and please use the default browser print
function instead.

Lead Authors: Alan Faisandier, Garry Roedler,
Contributing Author: Rick Adcock

The purpose of system architecture activities is to define
a comprehensive solution based on principles, concepts,
and properties logically related to and consistent with
each other. The solution architecture has features,
properties, and characteristics which satisfy, as far as
possible, the problem or opportunity expressed by a set
of system requirements (traceable to mission/business
and stakeholder requirements) and life cycle concepts
(e.g., operational, support) and which are implementable
through technologies (e.g., mechanics, electronics,
hydraulics, software, services, procedures, human
activity).

System Architecture is abstract, conceptualization-
oriented, global, and focused to achieve the mission and
life cycle concepts of the system. It also focuses on high-
level structure in systems and system elements. It
addresses the architectural principles, concepts,
properties, and characteristics of the system-of-interest.
It may also be applied to more than one system, in some
cases forming the common structure, pattern, and set of
requirements for classes or families of similar or related
systems.

Contents
General Concepts and Principles

Notion of Structure
Architecture Description of the System
Classification of Principles and Heuristics

http://sandbox.sebokwiki.org/System_Architecture

Transition from System Requirements to Logical
and Physical Architecture Models
Iterations between Logical and Physical
Architecture Model Development
Notion of Interface
Emergent Properties
Reuse of System Elements

Process Approach
Purpose
Activities of the process

1. Initialize the definition of the system
architecture
2. Define necessary architecture viewpoints
3. Develop candidate architectures models and
views
4. Relate system architecture to system design
5. Assess architecture candidates and select
one
6. Manage the selected architecture

Artifacts, Methods and Modeling Techniques
Practical Considerations

Pitfalls
Proven Practices

References
Works Cited
Primary References
Additional References
Relevant Videos

General Concepts and Principles

Notion of Structure

The SEBoK considers systems engineering to cover all
aspects of the creation of a system, including system
architecture.

The majority of interpretations of system architecture
are based on the fairly intangible notion of structure (i.e.
relationships between elements). Some authors limit the
types of structure considered to be architectural; for
example, restricting themselves to functional and

#1._Initialize_the_definition_of_the_system_architecture
#1._Initialize_the_definition_of_the_system_architecture
#2._Define_necessary_architecture_viewpoints
#3._Develop_candidate_architectures_models_and_views
#3._Develop_candidate_architectures_models_and_views
#4._Relate_system_architecture_to_system_design
#5._Assess_architecture_candidates_and_select_one
#5._Assess_architecture_candidates_and_select_one
#6._Manage_the_selected_architecture
#Artifacts.2C_Methods_and_Modeling_Techniques

physical structure. Recent practice has extended
consideration to include behavioral, temporal and other
dimensions of structure.

ISO/IEC/IEEE 42010 Systems and Software Engineering
- Architecture Description (ISO 2011) provides a useful
description of the architecture considering the
stakeholder concerns, architecture viewpoints,
architecture views, architecture models, architecture
descriptions, and architecting throughout the life cycle.

A discussion of the features of systems architectures can
be found in (Maier and Rechtin 2009).

An attempt to develop and apply a systematic approach
to characterizing architecture belief systems in systems
engineering has been described by the INCOSE UK
Architecture Working Group (Wilkinson et al. 2010,
Wilkinson 2010).

Architecture Description of the System

An architecture framework contains standardized
viewpoints, view templates, meta-models, model
templates, etc. that facilitate the development of the
views of a system architecture (see architecture
framework for examples). ISO/IEC/IEEE 42010 (ISO
2011) specifies the normative features of architecture
frameworks, viewpoints, and views as they pertain to
architecture description. A viewpoint addresses a
particular stakeholder concern (or set of closely related
concerns). The viewpoint specifies the kinds of model to
be used in developing the system architecture to address
that concern (or set of concerns), the ways in which the
models should be generated, and how the models are
related and used to compose a view.

Logical and physical models (or views) are often used for
representing fundamental aspects of the system
architecture. Other complementary viewpoints and views
are necessarily used to represent how the system
architecture addresses stakeholder concerns, for
example, cost models, process models, rule models,
ontological models, belief models, project models,
capability models, data models, etc.

Classification of Principles and Heuristics

Engineers and architects use a mixture of mathematical
principles and heuristics (heuristics are lessons learned
through experience, but not mathematically proven).

When an issue is identified and defined through system
requirements, principles and heuristics may or may not
be able to address it. Principles and heuristics that are
used in system views/models can be classified according
to the domains in which those system views/models are
used, as follows:

Static domain relates to physical structure or1.
organization of the SoI broken down into systems and
system elements. It deals with partitioning systems,
system elements, and physical interfaces.
Dynamic domain relates to logical architecture2.
models, particularly to the representation of the
behavior of the system. It includes a description of
functions (i.e. transformations of input flows into
output flows) and interactions between functions of
the system and between those of the external objects
or systems. It takes into account reactions to events
that launch or stop the execution of functions of the
system. It also deals with the effectiveness (i.e.
performances, operational conditions) of the system.
Temporal domain relates to temporal invariance3.
levels of the execution of functions of the system. This
means that every function is executed according to
cyclic or synchronous characteristics. It includes
decisional levels that are asynchronous characteristics
of the behavior of some functions.
Environmental domain relates to enablers4.
(production, logistics support, etc.), but also to the
survivability of the system in reaction to natural
hazards or threats and to the integrity of the system
in reaction to internal potential hazards. This includes,
for example, climatic, mechanical, electromagnetic,
and biological aspects.

More detailed classification of heuristics can be found in
(Maier and Rechtin 2009).

Transition from System Requirements to
Logical and Physical Architecture Models

The aim of the approach is to progress from system
requirements (representing the problem from a
supplier/designer point of view, as independent of
technology as possible) through an intermediate model
of logical architecture to allocate the elements of the
logical architecture model to system elements of

candidate physical architecture models.

(System requirements and logical architecture models
share many characteristics, as they are both organized
on functional lines, independently of the implementation.
Some authors (Stevens et al. 1998) go so far as to
conflate the two, which simplifies the handling of
multiple simultaneous views. Whether this approach is
adopted depends on the specific practices of the
development organization and where contractual
boundaries are drawn.)

Design decisions and technological solutions are
selected according to performance criteria and non-
functional requirements, such as operational conditions
and life cycle constraints (e.g., environmental conditions,
maintenance constraints, realization constraints, etc.), as
illustrated in Figure 1. Creating intermediate models,
such as logical architecture models, facilitates the
validation of functional, behavioral, and temporal
properties of the system against the system
requirements that have no major technological influence
impacts during the life of the system, the physical
interfaces, or the technological layer without completely
questioning the logical functioning of the system.

Figure 1. Usage of Intermediate Logical Architecture Models
During Architecture and Design (Faisandier 2012).Permission

granted by Sinergy'Com. All other rights are reserved by the
copyright owner.

Iterations between Logical and Physical
Architecture Model Development

As discussed in system requirements, the exact approach
taken in the synthesis of solutions will often depend on
whether the system is an evolution of an already
understood product or service, or a new and
unprecedented solution (see Synthesizing Possible
Solutions).

http://127.0.0.1/draft/File:SEBoKv075_KA-SystDef_Progressive_Approach_for_Designing.png
http://sandbox.sebokwiki.org/System_Requirements
http://sandbox.sebokwiki.org/Synthesizing_Possible_Solutions
http://sandbox.sebokwiki.org/Synthesizing_Possible_Solutions

Whatever the approach, architecture activities require
spending several iterations between logical architecture
models development and physical architecture models
development, until both logical and physical architecture
models are consistent and provide the necessary level of
detail. One of the first architecture activities is the
creation of a logical architecture model based on
nominal scenarios (of functions). The physical
architecture model is used to determine main system
elements that could perform system functions and to
organize them.

Subsequent logical architecture model iterations can
take into account allocations of functions to system
elements and derived functions coming from physical
solution choices. It also supplements the initial logical
architecture model by introducing other scenarios,
failure analyses, and operational requirements not
previously considered. Derived functions are allocated to
system elements; in turn, this affects the physical
architecture models.

Additional iterations are focused on producing complete
and consistent logical and physical views of the solution.

During system design, technological choices can
potentially lead to new functions, new input/output and
control flows, and new physical interfaces. These new
elements can lead to creation of new system
requirements, called derived requirements.

Notion of Interface

The notion of interface is one of the most important to
consider when defining the architecture of a system. The
fundamental aspect of an interface is functional and is
defined as inputs and outputs of functions. As functions
are performed by physical elements (system elements),
inputs/outputs of functions are also carried by physical
elements; these are called physical interfaces.
Consequentially, both functional and physical aspects
are considered in the notion of interface. A detailed
analysis of an interface shows the function “send”
located in one system element, the function “receive”
located in the other one, and the function “carry" as
being performed by the physical interface that supports
the input/output flow (see Figure 2).

Figure 2. Complete Interface Representation (Faisandier
2012).Permission granted by Sinergy'Com. All other rights are

reserved by the copyright owner.

In the context of complex exchanges between system
elements, particularly in software-intensive systems, a
protocol is seen as a physical interface that carries
exchanges of data. However, the input/output flows can
include many other exchanges than data, such as
energy.

Emergent Properties

The overarching architecture of a system may have
design properties or operational effects that emerge
from the arrangement and interaction between system
elements, but which may not be properties of any
individual element or intended for the system as a whole.

The elements of an engineered system interact among
themselves and can create desirable or undesirable
phenomena, such as inhibition, interference, resonance,
or the reinforcement of any property. The definition of
the system includes an analysis of interactions between
system elements in order to prevent undesirable
properties and reinforce desirable ones.

A property which emerges from a system can have
various origins, from a single system element to the
interactions among several elements (Thome, B. 1993).
The term emergent properties is used by some authors
to identify any property which emerges from a system,
while other may refer to this as synergy and reserve
emergent property for explaining unexpected properties
or properties not considered fully during system
development, but have emerged during operation. The
system concept of emergence is discussed in SEBoK Part
2 (see Emergence).

Table 1. Properties and Emergent Properties.(SEBoK
Original)

Broad Categories
of Properties Description and Examples

http://127.0.0.1/draft/File:SEBoKv075_KA-SystDef_Complete_Interface_Representation.png
http://sandbox.sebokwiki.org/Emergence

Local Property
The property is located in a single
system element – e.g. the capacity of a
container is the capacity of the system.

Accumulative
System Property

The property is located in several
system elements and is obtained
through the simple summation of
elemental properties – e.g. the weight of
the system results from the sum of the
weights of its system elements.

Emergent
Property Modified
by Architecture
and/or
Interactions.

The property exists in several system
elements and is modified by their
interactions – e.g. the reliability/safety
of a system results from the
reliability/safety of each system element
and the way they are organized.
Architectural steps are often critical to
meeting system requirements.

Emergent
Property Created
by Interactions

The property does not exist in system
elements and results only from their
interactions – e.g. electromechanical
interfaces, electromagnetism, static
electricity, etc.

Controlled
Emergent
Property

Property controlled or inhibited before
going outside the system – e.g.:
unbalance removed by the addition of a
load; vibration deadened by a damper.

Physical architecture design will include the
identification of likely synergies and emergent
properties and the inclusion of derived functions,
components, arrangements, and/or environmental
constraints in the logical or physical architectures
models to avoid, mitigate or restrain them within
acceptable limits. Corresponding derived requirements
should be added to the system requirements baseline
when they impact the system-of-interest(SoI). This may
be achieved through the knowledge and experience of
the systems engineer or through the application of
system patterns. However, it is generally not possible to
predict, avoid, or control all emergent properties during
the architecture development. Fully dealing with the
consequences of emergence can only be done via
iteration between system definition, system realization
and system deployment and use (Hitchins, 2008)

The notion of emergence is applied during architecture
and design to highlight necessary derived functions;
additionally, internal emergence is often linked to the
notion of complexity. This is the case with complex
adaptive systems (CAS), in which the individual elements
act independently, but behave jointly according to
common constraints and goals (Flood and Carson 1993).
Examples of CAS include: the global macroeconomic

network within a country or group of countries, stock
market, complex web of cross border holding companies,
manufacturing businesses, geopolitical organizations,
etc. (Holland, J. 1999 and 2006).

Reuse of System Elements

Systems engineers frequently utilize existing system
elements. This reuse constraint has to be identified as a
system requirement and carefully taken into account
during architecture and design. One can distinguish
three general cases involving system element reuse, as
shown in Table 2.

Table 2. System Element Re-use Cases (Faisandier
2012).Permission granted by Sinergy'Com. All other rights

are reserved by the copyright owner.
Re-use Case Actions and Comments

Case 1: The
requirements of the
system element are up-
to-date and it will be re-
used with no
modification required.

• The system architecture to be
defined will have to adapt to the
boundaries, interfaces, functions,
effectiveness, and behavior of the
re-used system element.
• If the system element is not
adapted, it is probable that costs,
complexity, and risks will increase.

Case 2: The
requirements of the
system element are up-
to-date and it will be re-
used with possible
modifications.

• The system architecture to be
defined is flexible enough to
accommodate the boundaries,
interfaces, functions, effectiveness,
and behavior of the re-used system
element.
• The design of the reused system
element, including its test reports
and other documentation, will be
evaluated and potentially
redesigned.

Case 3: The
requirements are not
up-to-date or do not
exist.

• It is necessary to reverse engineer
the system element to identify its
boundaries, interfaces, functions,
performances, and behavior. This is
a difficult activity, since the extant
documentation for the re-used
system element is likely unavailable
or insufficient.
• Reverse engineering is expensive
in terms of both time and money,
and brings with it increased risk.

There is a common idea that reuse is free; however, if
not approached correctly, reuse may introduce risks that
can be significant for the project (costs, deadlines,
complexity).

Process Approach

Purpose

The purpose of the System Architecture process is to
generate system architecture alternatives, to select one
or more alternative(s) that frame stakeholder concerns
and meet system requirements, and to express this in a
set of consistent views. (ISO 2015).

It should be noted that the architecture activities below
overlap with both system definition and concept
definition activities. In particular, key aspects of the
operational and business context, and hence certain
stakeholder needs, strongly influence the approach
taken to architecture development and description. Also,
the architecture activities will drive the selection of, and
fit within, whatever approach to solution synthesis has
been selected.

Activities of the process

Major activities and tasks performed during this process
include the following:

1. Initialize the definition of the system
architecture

Build an understanding of the environment/context of
use for which a system is needed in order to establish
insight into the stakeholder concerns. To do this,
analyze relevant market, industry, stakeholder,
enterprise, business, operations, mission, legal and
other information that help to understand the
perspectives that could guide the definition of the
system architecture views and models.
Capture stakeholder concerns (i.e., expectations or
constraints) that span system life cycle stages. The
concerns are often related to critical characteristics of
the system that relate to the stages; they should be
translated into or incorporated into system
requirements.
Tag system requirements that deal with operational
conditions (e.g., safety, security, dependability,
human factors, interfaces, environmental conditions)
and life cycle constraints (e.g., maintenance, disposal,
deployment) that would influence the definition of the

http://sandbox.sebokwiki.org/Concept_Definition
http://sandbox.sebokwiki.org/Concept_Definition

architecture elements.
Establish an architecture roadmap and strategy that
should include methods, modeling techniques, tools,
need for any enabling systems, products or services,
process requirements (e.g., measurement approach
and methods), evaluation process (e.g., reviews and
criteria).
Plan enabling products or services acquisition (need,
requirements, procurement).

2. Define necessary architecture viewpoints

Based on the identified stakeholder concerns, identify
relevant architecture viewpoints and architecture
frameworks that may support the development of
models and views.

3. Develop candidate architectures models and
views

Using relevant modeling techniques and tools, and in
conjunction with the Stakeholder Needs and
Requirements process and the System Requirements
process, determine the system-of-interest context
including boundary with elements of the external
environment. This task includes the identification of
relationships, interfaces or connections, exchanges
and interactions of the system-of-interest with
external elements. This task enables definition or
understanding of the expected operational scenarios
and/or system behaviors within its context of use.
Define architectural entities (e.g., functions,
input/output flows, system elements, physical
interfaces, architectural characteristics,
information/data elements, containers, nodes, links,
communication resources, etc.), which address the
different types of system requirements (e.g.,
functional requirements, interface requirements,
environmental requirements, operational conditions [
dependability, human factors, etc.], constraints
[physical dimensions, production, maintenance,
disposal]).
Relate architectural entities to concepts, properties,
characteristics, behaviors, functions, and/or
constraints that are relevant to decisions of the
system-of-interest architecture. This gives rise to

http://sandbox.sebokwiki.org/Stakeholder_Needs_and_Requirements
http://sandbox.sebokwiki.org/Stakeholder_Needs_and_Requirements
http://sandbox.sebokwiki.org/System_Requirements

architectural characteristics (e.g., generality,
modularity, operability, efficiency, simplicity).
Select, adapt, or develop models of the candidate
architectures of the system, such as logical and
physical models (see Logical Architecture Model
Development and Physical Architecture Model
Development). It is sometimes neither necessary nor
sufficient to use logical and physical models. The
models to be used are those that best address key
stakeholder concerns.
From the models of the candidate architectures,
compose views that are relevant to the stakeholder
concerns and critical or important requirements.
Define derived system requirements induced by
necessary instances of architectural entities (e.g.,
functions, interfaces) and by structural dispositions
(e.g., constraints, operational conditions). Use the
system requirements definition process to define and
formalize them.
Check models and views consistency and resolve any
identified issues. ISO/IEC/IEEE 42010, 2011 may be
used for this.
Verify and validate the models by execution or
simulation, if modeling techniques and tools permit.
Where possible, use design tools to check feasibility
and validity, and/or implement partial mock-ups, or
use executable architecture prototypes or simulators.

4. Relate system architecture to system design

Define the system elements that reflect the
architectural characteristics (when the architecture is
intended to be design-agnostic, these system
elements may be notional until the design evolves).
To do this, partition, align, and allocate architectural
characteristics and system requirements to system
elements. Establish guiding principles for the system
design and evolution. Sometimes, a “reference
architecture” is created using these notional system
elements as a means to convey architectural intent
and to check for design feasibility.
Define interfaces for those that are necessary for the
level of detail and understanding of the architecture.
This includes the internal interfaces between the
system elements and the external interfaces with

http://sandbox.sebokwiki.org/Logical_Architecture_Model_Development
http://sandbox.sebokwiki.org/Logical_Architecture_Model_Development
http://sandbox.sebokwiki.org/Physical_Architecture_Model_Development
http://sandbox.sebokwiki.org/Physical_Architecture_Model_Development

other systems.
Determine the design properties applicable to system
elements in order to satisfy the architectural
characteristics.
For each system element that composes the system,
develop requirements corresponding to allocation,
alignment, and partitioning of design properties and
system requirements to system elements. To do this,
use the stakeholder needs and requirements
definition process and the system requirements
definition process.

5. Assess architecture candidates and select one

Assess the candidate architectures using the
architecture evaluation criteria. This is done through
application of the System Analysis, Measurement, and
Risk Management processes.
Select the preferred architecture(s). This is done
through application of the Decision Management
process.

6. Manage the selected architecture

Establish and maintain the rationale for all selections
among alternatives and decisions for the architecture,
architecture framework(s), viewpoints, kinds of
models, and models of the architecture.
Manage the maintenance and evolution of the
architecture description, including the models, and
views. This includes concordance, completeness,
changes due to environment or context changes, and
technological, implementation, and operational
experiences. Allocation and traceability matrices are
used to analyze impacts onto the architecture. The
present process is performed at any time evolutions of
the system occur.
Establish a means for the governance of the
architecture. Governance includes the roles,
responsibilities, authorities, and other control
functions.
Coordinate reviews of the architecture to achieve
stakeholder agreement. The stakeholder requirements
and system requirements can serve as references.

http://sandbox.sebokwiki.org/System_Analysis
http://sandbox.sebokwiki.org/Measurement
http://sandbox.sebokwiki.org/Risk_Management
http://sandbox.sebokwiki.org/Decision_Management

Artifacts, Methods and Modeling
Techniques

This process may create several artifacts, such as system
architecture description documents and system
justification documents (traceability matrices and
architectural choices).

The content, format, layout, and ownership of these
artifacts may vary depending on the person creating
them and the domains in which they are being used. The
outputs of the process activities should cover the
information identified in the first part of this article.

Practical Considerations

Pitfalls

Some of the key pitfalls encountered in planning and
performing system architecture are provided in Table 3.

Table 3. Pitfalls with System Architecture
Definition.(SEBoK Original)

Pitfall Description

Problem
Relevance

If the architecture is developed without input
from the stakeholders' concerns or cannot be
understood and related back to their issues it
might lose the investments of the stakeholder
community.

Reuse of
System
Elements

In some projects, for industrial purposes,
existing products or services are imposed very
early as architecture/design constraints in the
stakeholder requirements or in the system
requirements, without paying sufficient
attention to the new context of use of the
system in which they are also included. It is
better to work in the right direction from the
beginning. Define the system first, note other
requirements, and then see if any suitable non-
developmental items (NDI) are available. Do
not impose a system element from the
beginning, which would reduce the trade-space.
The right reuse process consists of defining
reusable system elements in every context of
use.

Proven Practices

Some proven practices gathered from the references are
provided in Table 4.

Table 4. Proven practices with System Architecture
Definition.(SEBoK Original)

Practice Description

Emerging
properties

Control the emergent properties of the
interactions between the systems or the
system elements; obtain the required
synergistic properties and control or avoid
the undesirable behaviors (vibration, noise,
instability, resonance, etc.).

References

Works Cited

Faisandier, A. 2012. Systems Architecture and Design.
Belberaud, France: Sinergy'Com.

ISO/IEC/IEEE. 2015. Systems and Software Engineering
-- System Life Cycle Processes. Geneva, Switzerland:
International Organisation for Standardisation (ISO)/
International Electrotechnical Commissions
(IEC)/Institute of Electrical and Electronics Engineers
(IEEE). ISO/IEC/IEEE 15288:2015.

ISO/IEC/IEEE. 2011. Systems and Software Engineering
- Architecture Description. Geneva, Switzerland:
International Organization for Standardization
(ISO)/International Electrotechnical Commission
(IEC)/Institute of Electrical and Electronics Engineers
(IEEE). ISO/IEC/IEEE 42010.

Maier, M., and E. Rechtin. 2009. The Art of Systems
Architecting. 3rd ed. Boca Raton, FL, USA: CRC Press.

Wilkinson, M., A. James, M. Emes, P. King, P. Bryant.
2010. “Belief Systems in Systems Architecting: Method
and Preliminary Applications." Presented at the IEEE
SMC Society’s 5th International Conference on System
of Systems Engineering (SoSE). 22nd-24th June 2010.
Loughborough University, Leicestershire, UK.

Flood, R.L., and E.R. Carson. 1993. Dealing with
Complexity: An Introduction to the Theory and
Application of Systems Science, 2nd ed. New York, NY,
USA: Plenum Press.

Holland, J.H. 1999. Emergence: From Chaos to Order.
Reading, MA, USA: Perseus Books.

Hitchins, D. 2008. "Emergence, Hierarchy, Complexity,
Architecture: How Do They All Fit Together? A Guide for

Seekers after Enlightenment." Self-published white
paper. Accessed 4 September 2012. Available at:
http://www.hitchins.net/EmergenceEtc.pdf.

Holland, J.H. 2006. "Studying complex adaptive
systems." Journal of Systems Science and Complexity,
v o l . 1 9 , n o . 1 , p p . 1 - 8 . A v a i l a b l e
at:http://hdl.handle.net/2027.42/41486

Thome, B. 1993. Systems Engineering, Principles &
Practice of Computer-Based Systems Engineering. New
York, NY, USA: Wiley.

Primary References

ANSI/IEEE. 2000. Recommended Practice for
Architectural Description for Software-Intensive
Systems. New York, NY, USA: American National
Standards Institute (ANSI)/Institute of Electrical and
Electronics Engineers (IEEE), ANSI/IEEE 1471-2000.

INCOSE. 2015. Systems Engineering Handbook: A Guide
for System Life Cycle Processes and Activities, version
4.0. Hoboken, NJ, USA: John Wiley and Sons, Inc, ISBN:
978-1-118-99940-0.

ISO/IEC/IEEE. 2015. Systems and Software Engineering
- System Life Cycle Processes. Geneva, Switzerland:
International Organization for Standardization
(ISO)/International Electrotechnical Commission
(IEC)/Institute of Electrical and Electronics Engineers
(IEEE). ISO/IEC/IEEE 15288:2015.

Faisandier, A. 2012. Systems Architecture and
Design.Belberaud, France: Sinergy'Com.

Blanchard, B.S., and W.J. Fabrycky. 2005. Systems
Engineering and Analysis. 4th ed. Prentice-Hall
International Series in Industrial and Systems
Engineering. Englewood Cliffs, NJ, USA: Prentice-Hall.
ISO/IEC. 2007. Systems Engineering – Application and
Management of The Systems Engineering Process.
Geneva, Switzerland: International Organization for
Standards (ISO)/International Electrotechnical
Commission (IEC), ISO/IEC 26702:2007.

ISO/IEC/IEEE. 2011. Systems and Software Engineering
- Architecture Description. Geneva, Switzerland:
International Organization for Standardization
(ISO)/International Electrotechnical Commission
(IEC)/Institute of Electrical and Electronics Engineers
(IEEE), ISO/IEC/IEEE 42010.

http://www.hitchins.net/EmergenceEtc.pdf
http://hdl.handle.net/2027.42/41486
http://sandbox.sebokwiki.org/INCOSE_Systems_Engineering_Handbook
http://sandbox.sebokwiki.org/ISO/IEC/IEEE_15288
http://sandbox.sebokwiki.org/ISO/IEC/IEEE_15288
http://sandbox.sebokwiki.org/ISO/IEC/IEEE_15288
http://sandbox.sebokwiki.org/Systems_Engineering_and_Analysis
http://sandbox.sebokwiki.org/Systems_Engineering_and_Analysis
http://sandbox.sebokwiki.org/ISO/IEC_26702
http://sandbox.sebokwiki.org/ISO/IEC_26702
http://sandbox.sebokwiki.org/ISO/IEC_26702
http://sandbox.sebokwiki.org/ISO/IEC/IEEE_42010
http://sandbox.sebokwiki.org/ISO/IEC/IEEE_42010
http://sandbox.sebokwiki.org/ISO/IEC/IEEE_42010

Martin, J.N. 1997. Systems Engineering Guidebook: A
Process for Developing Systems and Products, 1st ed.
Boca Raton, FL, USA: CRC Press.

NASA. 2007. Systems Engineering Handbook.
Washington, D.C.: National Aeronautics and Space
Administration (NASA), NASA/SP-2007-6105.

Additional References

Checkland, P. B. 1999. Systems Thinking, Systems
Practice. Chichester, UK: John Wiley & Sons Ltd.

OMG. 2010. OMG Systems Modeling Language
specification, version 1.2, July 2010. Available at:
http://www.omg.org/technology/documents/spec_catalog.
htm.

Sillitto H. 2014. Architecting Systems - Concepts,
Principles and Practice. London, UK: College
Publications.

Wilkinson, M.K. 2010. “Z8: Systems Architecture,” in Z-
guide series. Foresgate, UK: INCOSE UK. Available at:
http://www.incoseonline.org.uk/Program_Files/Publicatio
ns/zGuides.aspx?CatID=Publications.

Relevant Videos

What is Systems Architecture (PART 1)

< Previous Article | Parent Article | Next Article >

SEBoK v. 2.9, released 20 November 2023

Retrieved from
"https://sandbox.sebokwiki.org/index.php?title=System_Architecture
&oldid=70174"

This page was last edited on 18 November 2023, at 23:40.

http://sandbox.sebokwiki.org/Systems_Engineering_Guidebook
http://sandbox.sebokwiki.org/NASA_Systems_Engineering_Handbook
http://www.omg.org/technology/documents/spec_catalog.htm
http://www.omg.org/technology/documents/spec_catalog.htm
http://www.incoseonline.org.uk/Program_Files/Publications/zGuides.aspx?CatID=Publications
http://www.incoseonline.org.uk/Program_Files/Publications/zGuides.aspx?CatID=Publications
https://www.youtube.com/watch?v=gGI3n8qLDN0&t=295s
http://sandbox.sebokwiki.org/System_Requirements
http://sandbox.sebokwiki.org/System_Definition
http://sandbox.sebokwiki.org/Logical_Architecture_Model_Development
https://sandbox.sebokwiki.org/index.php?title=System_Architecture&oldid=70174
https://sandbox.sebokwiki.org/index.php?title=System_Architecture&oldid=70174

