
System Lifecycle Process
Drivers and Choices
System Lifecycle Process Drivers and Choices

The printable version is no longer supported and may
have rendering errors. Please update your browser
bookmarks and please use the default browser print
function instead.

Lead Authors: Kevin Forsberg, Rick Adcock

As discussed in the Generic Life Cycle Model article,
there are many organizational factors that can impact
which life cycle processes are appropriate for a specific
system. Additionally, technical factors will also influence
the types of life cycle models appropriate for a given
system. For example, system requirements can either be
predetermined or they can be changing, depending on
the scope and nature of the development for a system.
These considerations lead to different life cycle model
selections. This article discusses different technical
factors which can be considered when selecting a life
cycle process model and provides examples, guidance
and tools from the literature to support life cycle model
selection. The life cycle model selected can impact all
other aspects of system design and development. (See
the knowledge areas in Part 3 for a description of how
the life cycle can impact systems engineering (SE)
processes.)

Contents
Fixed-Requirements and Evolutionary Development
Processes
Primary Models of Incremental and Evolutionary
Development
Incremental and Evolutionary Development Decision
Table
References

Works Cited

http://sandbox.sebokwiki.org/System_Lifecycle_Process_Drivers_and_Choices
http://sandbox.sebokwiki.org/Generic_Life_Cycle_Model

Primary References
Additional References

Fixed-Requirements and
Evolutionary Development
Processes
Aside from the traditional, pre-specified, sequential,
single-step development process (identified as Fixed
Requirements), there are several models of evolutionary
development processes; however, there is no one-size-
fits-all approach that is best for all situations. For rapid-
fielding situations, an easiest-first, prototyping approach
may be most appropriate. For enduring systems, an
easiest-first approach may produce an unscalable
system, in which the architecture is incapable of
achieving high levels of performance, safety, or security.
In general, system evolution now requires much higher
sustained levels of SE effort, earlier and continuous
integration and testing, proactive approaches to address
sources of system change, greater levels of concurrent
engineering, and achievement reviews based on
evidence of feasibility versus plans and system
descriptions.

Evolutionary development processes or methods have
been in use since the 1960s (and perhaps earlier). They
allow a project to provide an initial capability followed
by successive deliveries to reach the desired system-of-
interest (SoI). This practice is particularly valuable in
cases in which

rapid exploration and implementation of part of the
system is desired;
requirements are unclear from the beginning, or are
rapidly changing;
funding is constrained;
the customer wishes to hold the SoI open to the
possibility of inserting new technology when it
becomes mature; and
experimentation is required to develop successive
versions.

In evolutionary development a capability of the product
is developed in an increment of time. Each cycle of the
increment subsumes the system elements of the previous
increment and adds new capabilities to the evolving

product to create an expanded version of the product in
development. This evolutionary development process,
that uses increments, can provide a number of
advantages, including

continuous integration, verification, and validation of
the evolving product;
frequent demonstrations of progress;
early detection of defects;
early warning of process problems; and
systematic incorporation of the inevitable rework that
may occur.

Primary Models of Incremental
and Evolutionary Development
The primary models of incremental and evolutionary
development focus on different competitive and
technical challenges. The time phasing of each model is
shown in Figure 1 below in terms of the increment (1, 2,
3, …) content with respect to the definition (Df),
development (Dv), and production, support, and
utilization (PSU) stages in Figure 1 (A Generic System
Life Cycle Model) from the Life Cycle Models article.

http://sandbox.sebokwiki.org/Life_Cycle_Models

Figure 1. Primary Models of Incremental and Evolutionary
Development. (SEBoK Original)

The Figure 1 notations (Df1..N and Dv1..N) indicate that
their initial stages produce specifications not just for the
first increment, but for the full set of increments. These
are assumed to remain stable for the pre-specified
sequential model but are expected to involve changes for
the evolutionary concurrent model. The latter’s notation
(Dv1 and Df2R) in the same time frame, PSU1, Dv2 and
Df3R in the same time frame, etc.) indicates that the
plans and specifications for the next increment are being
re-baselined by a systems engineering team concurrently
with the development of the current increment and the
PSU of the previous increment. This offloads the work of
handling the change traffic from the development team
and significantly improves its chances of finishing the
current increment on budget and schedule.

In order to select an appropriate life cycle model, it is
important to first gain an understanding of the main
archetypes and where they are best used. Table 1
summarizes each of the primary models of single-step,
incremental and evolutionary development in terms of
examples, strengths, and weaknesses, followed by
explanatory notes.

http://sandbox.sebokwiki.org/File:Fig_1_Primary_models_of_incremental_and_evolutionary_development_KF.png

Table 1. Primary Models of Incremental and
Evolutionary Development (Boehm, et. al. 2014, page

73).
Model Examples Pros Cons

Pre-specified
Single-step

Simple
manufactured
products:
Nuts, bolts,
simple
sensors

Efficient, easy to
verify

Difficulties with
rapid change,
emerging
requirements
(complex
sensors, human-
intensive
systems)

Pre-specified
Multi-step

Vehicle
platform plus
value-adding
pre-planned
product
improvements
(PPPIs)

Early initial
capability,
scalability when
stable

Emergent
requirements or
rapid change,
architecture
breakers

Evolutionary
Sequential

Small: Agile
Larger:
Rapid
fielding

Adaptability to
change, smaller
human-intensive
systems

Easiest-first,
late, costly
fixes, systems
engineering
time gaps, slow
for large
systems

Evolutionary
Opportunistic

Stable
development,
Maturing
technology

Mature
technology
upgrades

Emergent
requirements or
rapid change,
SysE time gaps

Evolutionary
Concurrent

Rapid,
emergent
development,
systems of
systems

Emergent
requirements or
rapid change,
stable
development
increments,
SysE continuity

Overkill on small
or highly stable
systems

The Pre-specified Single-step and Pre-specified Multi-
step models from Table 1 are not evolutionary. Pre-
specified multi-step models split the development in
order to field an early initial operational capability,
followed by several pre-planned product improvements
(P3Is). An alternate version splits up the work but does
not f ield the intermediate increments. When
requirements are well understood and stable, the pre-
specified models enable a strong, predictable process.
When requirements are emergent and/or rapidly
changing, they often require expensive rework if they
lead to undoing architectural commitments.

The Evolutionary Sequential model involves an approach
in which the initial operational capability for the system
is rapidly developed and is upgraded based on
operational experience. Pure agile software development

fits this model. If something does not turn out as
expected and needs to be changed, it will be fixed in
thirty days at the time of its next release. Rapid fielding
also fits this model for larger or hardware-software
systems. Its major strength is to enable quick-response
capabilities in the field. For pure agile, the model can
fall prey to an easiest-first set of architectural
commitments which break when, for example, system
developers try to scale up the workload by a factor of ten
or to add security as a new feature in a later increment.
For rapid fielding, using this model may prove expensive
when the quick mash-ups require extensive rework to fix
incompatibilities or to accommodate off-nominal usage
scenarios, but the rapid results may be worth it.

The Evolutionary Opportunistic model can be adopted in
cases that involve deferring the next increment until: a
sufficiently attractive opportunity presents itself, the
desired new technology is mature enough to be added,
or until other enablers such as scarce components or key
personnel become available. It is also appropriate for
synchronizing upgrades of multiple commercial-off-the-
shelf (COTS) products. It may be expensive to keep the
SE and development teams together while waiting for
the enablers, but again, it may be worth it.

The Evolutionary Concurrent model involves a team of
systems engineers concurrently handling the change
traffic and re-baselining the plans and specifications for
the next increment, in order to keep the current
increment development stabilized. An example and
discussion are provided in Table 2, below.

Incremental and Evolutionary
Development Decision Table
The Table 2 provides some criteria for deciding which of
the processes associated with the primary classes of
incremental and evolutionary development models to
use.

Table 2. Incremental and Evolutionary Development
Decision Table. (Boehm, et. al., 2014, page 74).

Reprinted with permission.

Model
Stable, pre-
specifiable

requirements?

OK to wait
for full

system to
be

developed?

Need to wait
for next-

increment
priorities?

Need to wait
for next-

increment
enablers*?

Pre-specified
Single-step Yes Yes

Pre-specified
Multi-step Yes No

Evolutionary
Sequential No No Yes

Evolutionary
Opportunistic No No No Yes

Evolutionary
Concurrent No No No No

*Example enablers: Technology maturity; External-
system capabilities; Needed resources; New
opportunities

The Pre-specified Single-step process exemplified by the
traditional waterfall or sequential Vee model is
appropriate if the product’s requirements are pre-
specifiable and have a low probability of significant
change and if there is no value or chance to deliver a
partial product capability. A good example of this would
be the hardware for an earth resources monitoring
satellite that would be infeasible to modify after it goes
into orbit.

The Pre-specified Multi-step process splits up the
development in order to field an early initial operational
capability and several P3I's. It is best if the product’s full
capabilities can be specified in advance and are at a low
probability of significant change. This is useful in cases
when waiting for the full system to be developed incurs a
loss of important and deliverable incremental mission
capabilities. A good example of this would be a well-
understood and well-prioritized sequence of software
upgrades for the on-board earth resources monitoring
satellite.

The Evolutionary Sequential process develops an initial
operational capability and upgrades it based on
operational experience, as exemplified by agile methods.
It is most needed in cases when there is a need to obtain
operational feedback on an initial capability before
defining and developing the next increment’s content. A
good example of this would be the software upgrades
suggested by experiences with the satellite’s payload,
such as what kind of multi-spectral data collection and
analysis capabilities are best for what kind of agriculture
under what weather conditions.

The Evolutionary Opportunistic process defers the next
increment until its new capabilities are available and
mature enough to be added. It is best used when the
increment does not need to wait for operational
feedback, but it may need to wait for next-increment
enablers such as technology maturity, external system
capabilities, needed resources, or new value-adding
opportunities. A good example of this would be the need
to wait for agent-based satellite anomaly trend analysis

and mission-adaptation software to become predictably
stable before incorporating it into a scheduled
increment.

The Evolutionary Concurrent process, as realized in the
incremental commitment spiral model (Pew and Mavor
2007; Boehm, et.al., 2014, page 75) and shown in Figure
2, has a continuing team of systems engineers handling
the change traffic and re-baselining the plans and
specifications for the next increment, while also keeping
a development team stabilized for on-time, high-
assurance delivery of the current increment and
employing a concurrent verification and validation (V&V)
team to perform continuous defect detection to enable
even higher assurance levels. A good example of this
would be the satellite’s ground-based mission control
and data handling software’s next-increment re-
baselining to adapt to new COTS releases and continuing
user requests for data processing upgrades.

The satellite example illustrates the various ways in
which the complex systems of the future, different parts
of the system, and its software may evolve in a number
of ways, once again affirming that there is no one-size-
fits-all process for software evolution. However, Table 2
can be quite helpful in determining which processes are
the best fits for evolving each part of the system.
Additionally, the three-team model in Figure 2 provides a
way for projects to develop the challenging software-
intensive systems of the future that will need both
adaptability to rapid change and high levels of
assurance.

Figure 2. Evolutionary-Concurrent Rapid Change Handling
and High Assurance (Pew and Mavor 2007, Figure 2-6).

Reprinted with permission from the National Academy of Sciences,
Courtesy of National Academies Press, Washington, D.C. All other

rights are reserved by the copyright owner.

http://sandbox.sebokwiki.org/File:KF_EvolutionaryConcurrentChange.png

References

Works Cited

Boehm, B. 2006. “Some Future Trends and Implications
for Systems and Software Engineering Processes.”
Systems Engineering. 9(1): 1-19.

Boehm, B. and J. Lane. 2007. “Using the Incremental
Commitment Model to Integrate System Acquisition,
Systems Engineering, and Software Engineering.”
CrossTalk. October 2007: 4-9.

Boehm, B. and J. Lane. 2010. DoD Systems Engineering
and Management Implications for Evolutionary
Acquisition of Major Defense Systems. SERC RT-5
report, March 2010. USC-CSSE-2010-500.

Boehm, B., J. Lane, S. Koolmanojwong, and R. Turner.
2014. The Incremental Commitment Spiral Model:
Principles and Practices for Successful Systems and
Software. Indianapolis, IN, USA: Addison-Wesley.

Cusumano, M. and D. Yoffee. 1998. Competing on
Internet Time: Lessons from Netscape and Its Battle
with Microsoft. New York, NY, USA: Free Press.

Pew, R. and A. Mavor (eds.). 2007. Human-System
Integration in the System Development Process: A New
Look. Washington DC, USA: The National Academies
Press.

Primary References

Pew, R., and A. Mavor (eds.). 2007. Human-System
Integration in the System Development Process: A New
Look. Washington, DC, USA: The National Academies
Press.

Additional References

None.

< Previous Article | Parent Article | Next Article >
SEBoK v. 2.9, released 20 November 2023

Retrieved from
"https://sandbox.sebokwiki.org/index.php?title=System_Lifecycle_Pro

http://sandbox.sebokwiki.org/Human-System_Integration_in_the_System_Development_Process
http://sandbox.sebokwiki.org/Human-System_Integration_in_the_System_Development_Process
http://sandbox.sebokwiki.org/System_Lifecycle_Models
http://sandbox.sebokwiki.org/System_Lifecycle_Models
http://sandbox.sebokwiki.org/System_Life_Cycle_Process_Models:_Vee
https://sandbox.sebokwiki.org/index.php?title=System_Lifecycle_Process_Drivers_and_Choices&oldid=70055

cess_Drivers_and_Choices&oldid=70055"

This page was last edited on 18 November 2023, at 23:26.

https://sandbox.sebokwiki.org/index.php?title=System_Lifecycle_Process_Drivers_and_Choices&oldid=70055

